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Bioethanol production would benefit from a rapid screening method to determine the ability of feed-
stock to be processed into fermentable sugars. The aim of this study was to relate near infrared
(NIR) spectra of straw to the release of sugars for ethanol production from cultivars of winter wheat,
and to establish a calibration model to quickly determine the content of structural carbohydrates,
lignin, and ash. We applied a high-throughput pretreatment and enzymatic hydrolysis (HTPPH)
assay, involving hydrothermal pretreatment (180 �C for 17.6 min) and enzymatic hydrolysis, to estab-
lish the release of glucose and xylose from 20 cultivars grown in two replicates at two sites; in total
79 samples were measured. The NIR spectra could explain 56% of the variance in sugar release
with a root mean square error of cross-validation (RMSECV) of 0.014 g g−1 dm. NIR calibrations pre-
dicting content of structural carbohydrates and lignin could explain only about 25% of total variance,
whereas calibrations predicting ash content could explain 94% of total variance. The relatively low
percentage of explained variance of sugar release was due mainly to uniformity of samples, which
rendered the uncertainty of HTPPH method to be large compared with variance between samples.
NIR spectroscopy, therefore, has potential to assess sugar release of wheat straw. Improved pre-
diction of carbohydrates and lignin require better compositional analysis for homogeneous material.
Despite successful prediction of ash content, site-specific cross-validation indicated that there might
be problems with model transferability from site to site.
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1. INTRODUCTION

In recent years it has been increasingly apparent that an
important step in making second generation bioethanol pro-
duction a commercial reality, is to obtain a better under-
standing of how feedstock affects production.1 Varying
capacity of the feedstock to be processed into fermentable
sugars after pretreatment could be related to variability in
chemical composition and differences in recalcitrance of
the feedstock. High-throughput pretreatment and enzymatic

∗Author to whom correspondence should be addressed.
Email: lindedam@life.ku.dk

hydrolysis (HTPPH) methods have been developed in order
to analyze a large number of feedstock samples for sugar
production following pretreatment.2�3 Although HTPPH
methods dramatically reduce processing times compared to
prior approaches, they still take time for grinding biomass,
accurately weighing materials, and conducting the pretreat-
ment and hydrolysis steps.
Near Infrared Spectroscopy (NIR) has been suggested

as a rapid and non-destructive method to replace ref-
erence methods for determination of chemical composi-
tion of feedstock and capacity for bioethanol production.4

Spectroscopy holds an advantage over HTPPH methods in
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that samples can be analysed much faster and require less
preparation. Few feasibility studies on sugar or ethanol
yield following pretreatment have been published to date,
although spectroscopy has previously been used in cali-
bration models for analytical parameters during hydrolysis
and fermentation5�6 and for assessing chemical composi-
tion of maize stover.7–10 Isci et al.11 proved NIR spec-
troscopy to be able to satisfactorily predict ethanol yield
from maize stover after pretreatment with aqueous ammo-
nia and simultaneous saccharification and fermentation.
For wheat straw, Lomborg et al.12 found good NIR predic-
tion accuracy for glucan and xylan content in 44 samples
of straw. No attempts, however, to develop NIR calibra-
tions for sugar release after pretreatment and enzymatic
hydrolysis of wheat straw have been published.
The aim of this study was to establish a validated cal-

ibration model between release of fermentable sugars in
pretreatment and enzymatic hydrolysis as determined in
a HTPPH system and the content of structural carbohy-
drates, lignin, ash, and NIR spectra of wheat straw.

2. MATERIALS AND METHODS

2.1. Wheat Cultivars, Collection and Fractionation

Winter wheat straw was sampled from two sites in
Denmark, where field experiments comparing cultivars
were conducted. Approximately 80 g of straw from 20
cultivars of mature winter wheat was collected in 2007
from two blocks at each of two sites near the towns
of Sejet (55�49′12.43′′ N and 9�55′21.82′′ E) and Abed
(54�49′40.05′′ N and 11�19′30.62′′ E). Collecting straw
was done at the same day at the two sites just after normal
grain harvest. Growing conditions (fertilizers etc.) were
kept the same at the two sites, thus straws represented the
natural variation (in climate, soil type etc.) in the biomass
feedstock for a Danish ethanol plant. Cultivars were North-
ern European breeds: Abika, Ambition, Audi, Dinosor,
Flair, Florett, Glasgow, Hattrick, Inspiration, Jenga, Oak-
ley, Opus, Penso, Potenzial, Robigus, Samyl, Skalmeje,
Smuggler, Tommi, Tuscan. One sample was lost during
harvest and the total set was therefore 79 air-dried samples.
Samples were fractionated into anatomical components of
ears (flower spike free of grain), leaves (leaves without the
leaf sheath), and stem (remaining part). After weighing,
anatomical parts were mixed together, milled to <1 mm on
a cyclone mill (President, Holbæk, Denmark), and stored
at ambient temperature until analysis. A subsample of the
milled straw was used for analysis of chemical composi-
tion and another subsample for NIR.

2.2. Chemical Composition

Chemical compositions of the wheat samples were deter-
mined by two-step acid hydrolysis of the carbohydrates,
according to the procedure published by NREL.13 Analyses

were done on air-dried samples containing on average 7.9%
weight by weight (w/w) water (standard deviation 0.9%).
Dry matter content was determined on a Sartorius MA30
dry weight balance. No extractions have been preformed
prior to the acid hydrolysis in order to maintain the original
composition of the biomass with most resemblance to the
biomass used for NIR spectra recording. First, 3 mL 72%
(w/w) H2SO4 was added to 300 mg air-dried milled wheat
sample and incubated at 30 �C for 1 h. Next, the samples
were diluted with 84 mL Millipore water and autoclaved at
121 �C for 1 h (Tuttnauer, 2540 EL). Finally, hydrolyzates
were filtered, neutralized with CaCO3 and diluted with elu-
ent before monomeric sugar concentrations were quantified
on a Dionex Summit high performance liquid chromatog-
raphy (HPLC) system. The separation was performed in
a Phenomenex Rezex ROA column at 80 �C with 5 mM
H2SO4 as the eluent, running at a flow rate of 0.6 mLmin−1

with a Shimadzu RI-detector. Hemicellulose was calculated
as the sum of xylose and arabinose concentrations. Klason
lignin content was determined as the weight of the dried
filter cake (dried over night at 105 �C) minus the ash con-
tent (dried 3 h at 550 �C). All measurements were done
in triplicates and results are presented as percentage of dry
matter.

2.3. Sugar Released from Wheat Straw

To measure sugar release from straw, we utilized the
relatively new HTPPH 96-well-plate screening system,
developed by Studer et al.3 The conditions chosen for the
experiment were determined by testing different pretreat-
ment conditions and enzyme loadings on a wheat straw
cultivar chosen from the data set as a standard. Briefly, all
79 samples were subjected to pretreatment and hydrolysis
in the metal well-plate in triplicates. Hydrothermal pre-
treatment was performed at 1% (w/w) solid loading with
indirect steam heating for 17.6 minutes at 180 �C, cor-
responding to a log severity of 3.6.14 This was done by
loading 2.5 mg dry matter (dm) milled straw to each well
and soaking for four hours in de-ionized water (total reac-
tion mass of 250 mg) before heating the well-plate with
steam. Following pretreatment, hydrolysis was performed
on the entire pretreated slurry by applying a fixed enzyme
loading to all wells using a 5:1 (w/w) enzyme mix of cel-
lulase (Celluclast, Novozymes) and cellobiase (Novozyme
188, Novozymes). Enzyme loading for individual culti-
vars thus ranged from 57.9 to 72.1 FPUg−1 glucan+
xylan in the raw material (standard deviation 3.1 FPUg−1

glucan+xylan). The well-plate was then placed vertically
in an incubation shaker (Multitron InFors, ATR Biotech,
MD) at 50 �C and 150 rpm. After 72 hours of hydrolysis,
content of each well was transferred to 2 mL centrifuge
tubes and centrifuged for 10 minutes at 18,200 g-forces
(5415 D, Eppendorf, Hamburg, Germany). Sugar concen-
trations in the supernatant were analyzed using HPLC
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with an Alliance 2695 system (Waters, Milford, MA), an
Aminex HPX-87H column (BioRad, Hercules, CA) heated
to 65 �C and using 5 mM H2SO4 as eluent in an isocratic
mode. Detection was done by a refractive index detector
(2414, Waters). Sugar release of each cultivar was calcu-
lated as release of glucose (Glu), xylose (Xyl) and glucose
plus xylose (total sugar, TS) in gram per gram dry matter
of raw biomass (g g−1 dm).

2.4. NIR Spectroscopy

Two NIR spectra were recorded for milled straw samples:
One for air-dried sample and one for oven-dried sample
(80 �C). NIR spectra were recorded on a NIR system
6500 (FOSS Tecator, Copenhagen, Denmark) spectrome-
ter running in reflectance mode with a spectral range from
400 nm to 2500 nm at 2 nm intervals. The samples are
not physically the same samples as used in the biochem-
ical composition analyses. Approximately 1 g of milled
straw material was scanned in a 36 mm Ø spinning cup,
where 16 spectra from different sections of the cup were
averaged. With R being the ratio of the reflectance of the
sample to a reference standard absorbance was calculated
by the equation: A= log10 (R−1�.

2.5. NIR Calibration

Partial Least Square (PLS) regressions were per-
formed in LatentiX 2.00 (Latent5, Denmark, http://www.
latentix.com) predicting the sugar release, chemical and
anatomical composition from the NIR spectra. The data
set on sugar release and chemical composition going into
the regressions are the average values of triplicate mea-
surements. Different methods for transforming NIR spec-
tra were tested including multiplicative signal correction,15

standard normal variate,16 and second order Savitzky-
Golay derivatives.17 Transforming with finite differences
(employing a smoothing window in a second-order poly-
nomial of five segments and a gap of three) was found
to give the highest percentage of explained variances in
most calibrations and was chosen as the preferred trans-
formation. All PLS models were validated using two
different cross-validation schemes: repeated random cross-
validation (RRCV) using five segments and 20 drawings,
and site-segmented cross-validation (SSCV) using two
segments defined by the two growing sites. RRCV thus
used the data set four times with 20 random samples left
out at a time and SSCV used the data of one site to predict
the data of the other site. Validation was used to deter-
mine the optimal number of components to be included
in the PLS calibration. The advantage of RRCV is that
the dataset is used extensively to achieve relatively precise
estimates of the performance of the calibrations. Devel-
oped calibrations, however, may be prone to problems with
transferability and SSCV was therefore applied to test that
the developed model could be transferred from one site

to another. The performance of PLS calibrations in the
cross-validations are reported as percentage of explained
variance of the validated Y matrix (R2) and the root mean
square error of cross-validation (RMSECV) is defined as:

R2 = 1−
∑

�Yi−Yi�pred��
2∑

�Yi−�Y �2 ∗100%

RMSECV =
√

1
n

n∑
i=1

�Yi�pred�−Yi�
2

where i is the individual sample and i(pred) is the indi-
vidual validated predicted sample out of the data set of n
samples (n= 79).
For evaluation of NIR calibrations, RMSECV can be

compared with the standard deviation of the laboratory
method (SDL) based on the laboratory replicates in the
reference method

SDL =
√∑n

i=1

∑m
j=1 �Xij −�Xj�

2

n∗m−1

where i is the individual laboratory replicate out of n repli-
cations (n = 3) and j is the individual sample out of m
samples (m= 79). When the ratio of RMSECV to SDL is
1 it indicates that NIR calibration is as good a predictor
as the actual measurements of the reference method itself,
i.e., that the uncertainty of NIR prediction is equal to the
uncertainty of the reference method.

3. RESULTS AND DISCUSSION

3.1. Calibrations and Predictions of Sugar Release

The raw data for chemical composition, sugar release after
pretreatment and hydrolysis, and anatomical distribution
of 79 wheat samples are listed in Table I.
The visible range of the NIR spectra from 400 nm to

1100 nm appeared noisy and using the full NIR spec-
tra resulted in negative values of explained variance with
SSCV validations. Thus the spectral range from 1100 nm
to 2498 nm was used for all calibrations. During the devel-
opment of the PLS regressions, six samples which were
extremes in cellulose content (four samples above 41%
cellulose and two samples below 34% cellulose), resulted
in calibrations of small or negative value in explained vari-
ance of predicted cellulose for both validations. As omit-
ting these six samples slightly improved the outcome of
other calibrations as well, we chose to remove them from
the final calibration set. The NIR calibrations predicting
the sugar release, chemical components and anatomical
fractions are shown in Table II. One calibration model
using the chemical components and anatomical distribu-
tions to predict the total sugar release was included.
Predictions of total sugar release from air-dried spectra

explained 56% of the variance when validated by RRCV

J. Biobased Mater. Bioenergy 4, 1–6, 2010 3
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Table I. Average chemical composition, average release of total sugar, and average anatomical distribution of 20 wheat straw cultivars grown at two
sites in duplicates. Stdev= Standard deviations (n= 40 for Abed site and n= 39 for Sejet site). Minimum and maximum values for the averages of the
cultivars are given. Cell= Cellulose, Hemi= Hemicellulose, TS g g−1 dm= release of total sugar (glucose plus xylose) in gram per gram dry matter
biomass.

Cell % Hemi % Lignin % Ash % TS g g−1 dm Leaves % Ears % Stem %

Abed Average 36�6 25�6 19�5 6�6 0�39 10�5 6�9 82�6
Stdev 1�6 1�3 0�6 0�9 0�02 2�4 2�3 3�7
Min 34�2 23�2 18�2 5�4 0�36 6�0 2�2 77�2
Max 40�8 28�6 20�4 8�8 0�43 13�3 10�7 89�6

Sejet Average 37�0 25�4 19�1 6�3 0�40 8�4 4�6 87�1
Stdev 1�4 0�9 0�5 0�7 0�02 1�6 1�8 2�5
Min 34�6 23�6 18�2 5�1 0�36 4�6 2�2 83�2
Max 38�8 26�7 20�9 7�6 0�42 11�5 7�5 92�9

and 46% of the variance when validated by SSCV, using
three PLS components models (Table II). When sugar
release was predicted from the oven-dried sample spectra,
the calibration resulting from the RRCV was more com-
plex (six PLS components), but with an ability to explain
62% of the variance. Oven-drying the samples was done,
because we suspected that variation in moisture content
of native samples would result in variations in NIR spec-
tra, which would be unrelated to sugar release and thus
lower the prediction capacity. The SSCV on oven-dried
samples, however, only had an ability to explain 40% of
the variance in sugar release with a three-component cali-
bration. Such a change in prediction capacity when using
site-segmented validation suggest that the six-component
model developed with RRCV was over-fitted and therefore
not very robust or transferable to other sites.
The calibration selected as the best for sugar release

was therefore the RRCV version predicting 56% of vari-
ance in sugar release from air-dried samples (Fig. 1).
The RMSECV of this model is 0.014 g g−1 dm, which

Table II. Calibration models using NIR spectra to predict total sugar release (TS), glucose release (Glu), xylose release (Xyl), chemical components
and anatomical fractions. One model uses chemical components and anatomical fractions to predict total sugar release. Models are presented with
number of optimal principal components (PC), root mean square error of cross-validation (RMSECV), percentage of explained Y variance (R2� for
spectra recorded on air-dried or oven-dried (80 �C) samples and validated with either repeated random cross validation (RRCV) or site segmented
cross validation (SSCV). All calibrations were done with 73 samples. In RRCV calibration set consist of 20 random samples repeated 5 times, while
SSCV has a calibration set of the samples from first Abed site (n= 40) then Sejet site (n= 39). Negative percentage of explained variance is a result
of unstable calibrations.

NIR air-dried NIR 80 �C

RRCV SSCV RRCV SSCV

X Y PC RMSECV R2 % PC RMSECV R2 % PC RMSECV R2 % PC RMSECV R2 %

NIR TS g g−1 dm 3 0.014 56 3 0.016 46 6 0.012 62 3 0.017 40
Chemistry + TS g g−1 dm 1 0.018 23 2 0.019 21 1 0.018 25 2 0.019 21

anatomy
NIR Glu g g−1 dm 3 0.010 38 1 0.013 −1 5 0.009 44 2 0.011 25
NIR Xyl g g−1 dm 4 0.005 68 3 0.006 73 5 0.005 69 5 0.005 76
NIR %cell 1 1.247 18 1 1.332 32 1 1.246 19 1 1.262 38
NIR %ash 9 0.230 94 2 0.559 71 12 0.171 96 1 1.262 −21
NIR %lignin 2 0.742 16 1 0.753 27 1 0.776 2 1 0.808 17
NIR %hemi 3 0.852 24 1 0.898 17 5 0.826 23 1 0.890 19
NIR %Leaves 4 1.755 61 6 2.747 34 5 1.775 52 3 1.950 65
NIR %Ears 3 2.811 20 1 4.276 −11 3 2.886 16 1 3.896 −2
NIR %Stem 4 3.413 40 1 6.399 −2 3 3.602 28 3 3.928 56

has to be compared with the SDL of the HTPPH assay
of 0.0129 g g−1 dm. Uncertainty of the NIR estimates
(RMSECV) were thus 1.09 times greater than the refer-
ence method and better predictions cannot be expected.
Range of sugar releases in this study was rather narrow
(averages of triplicates ranged from 0.36 to 0.43 g g−1 dm,
with a mean value of 0.39 g g−1 dm and a mean standard
deviation of 0.02 g g−1 dm, Table I) with small differences
to detect using the HTPPH assay, which has previously
been demonstrated to detect differences in yield of over
5%.3 As illustrated in Figure 1 the standard deviations for
the mean measured sugar releases, analyzed in triplicates
with HTPPH method, was large compared with the dif-
ferences between samples. The relatively low fraction of
explained variation in sugar release by the NIR calibra-
tion is therefore likely to be caused by a large uncertainty
in the HTPPH assay compared with the small differences
between samples. As analyses of sugar release, NIR spec-
tra and biochemical composition are not preformed on the
exact same sample, sampling issues could be important.

4 J. Biobased Mater. Bioenergy 4, 1–6, 2010
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Measured total sugar release (g g–1 dm)

0.34 0.36 0.38 0.40 0.42 0.44

P
re

di
ct

ed
 to

ta
l s

ug
ar

 r
el

ea
se

 (
g 

g–1
 d

m
)

0.34

0.36

0.38

0.40

0.42

0.44

Fig. 1. Plot of average measured total sugar release (n = 3, error bars
are standard deviations) in grams glucose plus xylose per gram dry mat-
ter biomass from 79 wheat samples versus total sugar release predicted
(cross-validated) for each sample by NIR calibration.

When performing triplicate measurements of each anal-
ysis, however, we do not see alarming data variations
to indicate sampling problems within our milled straw
samples. Isci et al.11 reported a standard error of cross-
validation of 2.0% theoretical maximum ethanol yield and
a standard error of laboratory results of 2.2% theoretical
maximum ethanol yield. Calibration thus had lower uncer-
tainty of NIR estimates than the uncertainty of laboratory
results, suggesting an over-fitted model. Although predic-
tion capacity for ethanol yield was high (correlation coef-
ficient between measured and predicted values was 0.96),
calibration was only preformed on 24 samples.11

With our data set we also had the opportunity to study
if measurements of chemical composition and anatomi-
cal fractions together would be able to predict the release
of total sugar. A model with chemical and anatomical
data as the X matrix and total sugar release as the Y
matrix explained up to 25% variance with a RMSECV
of 0.018 g g−1 dm (Table II). Results were only slightly
affected by validation method, indicating good transfer-
ability of the calibrations. Chemical and anatomical com-
position thus seems to be important for sugar release of
the samples (predicting 25% variance), but is a poorer pre-
dictor of total sugar release than NIR spectra (predicting
56% variance). NIR was a better predictor of the release
of xylose than the release of glucose (Table II), and cali-
brations for xylose were more robust in terms of transfer-
ability and oven-drying the samples.

3.2. Calibrations and Predictions of Chemical
Components

Complex models (9 and 12 PCs) could predict 94–96%
of the variance in ash content (Table II). Curiously, for
the ash predictions we observed a large difference in the
calibration performances between the two different valida-
tion methods (Table II). RMSECV is two to seven times

higher for site specific validation than for random valida-
tion, indicating that there are problems with the transfer
of the RRCV based calibration models from site to site
and therefore also outside the calibration set. When using
spectra from air-dried samples the prediction performance
after SSCV is lowered to 71%, whereas the spectra from
oven-dried samples have no prediction value for ash at
all. The fact that the RRCV model had a much better R2

value and used more components than the SSCV signi-
fied that the good performance of the RRCV was only
valid within the sites used for calibration and that the
model is not transferable to other sites. Oven-drying sam-
ples have apparently introduced a site variation in NIR
spectra, rendering spectra unable to predict ash content in
new samples from another site. Problems with transferabil-
ity of models predicting ash content of wheat straw was
also found by Bruun et al.18 Our results indicate that these
problems are accentuated when the samples are dried.
The percentage of explained variance for predictions of

cellulose, lignin, and hemicellulose evaluated by RRCV
and based on the spectra of the air-dried samples was
18%, 16%, and 24% with RMSECV of 1.2, 0.74, and
0.85 using one, two, and three components. Similar results
were obtained for the calibrations based on the oven-dried
samples except for the calibrations of the lignin content
which did not seem to work on dried samples. Compar-
ing RMSECV with the SDL for each component in the
acid-hydrolysis established that the uncertainty of the NIR
estimates were 1.5, 1.1, and 0.42 times that of the uncer-
tainty of the reference method. Predicting a greater per-
centage of variance in cellulose, lignin or hemicellulose
therefore requires better reference methods for samples
like ours with a relatively narrow span in chemical com-
position. As achieving much more accurate results from
the compositional analyses used as reference method is
unlikely, it also appears impossible to achieve a higher
fraction of explained variance when datasets with such a
narrow span in composition is used. The average values
of lignin, ash and carbohydrates measured with the NREL
method sum to approximately 88% of the dry weight of
samples (Table I) and attempting to close the mass bal-
ance further by including extraction would have changed
the composition of preprocessed biomass which we aim to
predict.
Lomborg et al.12 developed calibrations of glucan,

xylan, arabinan and lignin of wheat straw samples and
obtained squared correlation coefficients (r2) between
measured and predicted values of r2 = 0.83, 0.82, 0.77 and
0.72 and root mean square error of prediction, RMSEP,
of 0.60, 0.43, 0.12 and 0.38. It would seem that Lomborg
et al.12 were more successful in developing calibrations
than in the present study. The calibrations of Lomborg
et al.12 are however performed on a small dataset (44 sam-
ples with up to 18% outliers) and validated in a full-cross
validation, which is likely to result in more optimistic

J. Biobased Mater. Bioenergy 4, 1–6, 2010 5
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results than the cross-validations employed in the present
study. We have not been able to calculate the SDL of the
reference method for chemical compositions in Lomborg
et al.12

4. CONCLUSION

NIR could predict 56% of the variance in total sugar
release (glucose and xylose) with a RMSECV of
0.014 g g−1 dm. In terms of monomeric sugar release,
NIR was a better predictor of xylose release (max R2 =
76%) than of glucose release (max R2 = 44%). Percentage
of explained variance for predictions of cellulose, lignin,
hemicellulose, and ash was 18%, 16%, 24%, and 94%.
The relatively low percentage of explained variance in total
sugar release was mainly due to the uniformity between
samples, all consisting of wheat straw, which rendered
uncertainty of replicates in HTPPH assay to be large com-
pared with variance between samples. NIR spectroscopy
is therefore concluded to have potential as a method for
assessing sugar release of wheat straw. Predictions of
sugar release made from NIR calibrations was significantly
better than predictions made from measurements of chem-
ical and anatomical composition, which further accentu-
ates the usefulness of NIR spectroscopy. Predictions of
chemical components made from NIR calibrations were,
however, limited by the reference method on our uniform
sample-set. Despite successful prediction of ash content,
site-specific cross-validation indicated that there might be
problems with model transferability from site to site.
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