
Enzymatically based cellulosic ethanol production 
technology was selected as a key area for biomass 
technology development in the 1980s, and the US 
Department of Energy (DOE) has actively supported 
the scale up of ethanol production since the Office of 
Alcohol Fuels was created in the DOE after the ‘energy 
crisis’ of the 1970s. Although biological conversion 
of cellulosic biomass to fuels and chemicals through 
enzymatic hydrolysis of cellulose offers the potential for 
higher yields, higher selectivity, lower energy costs and 
milder operating conditions than chemical processes, 

such technology was judged to be too high risk for 
industry to pursue at that time [1]. However, applica-
tion of the emerging field of biotechnology offered the 
promise for significant advances that could dramati-
cally reduce costs and make cellulosic ethanol com-
petitive. Improvements in dilute acid pretreatment 
and cellulase produced by Trichoderma reesei discov-
ered during World War II led to most of the historic 
cellulosic ethanol cost reductions in the 1980s [2–4]. 
Well-known T. reesei Rut C30 was derived at Rutgers 
University through classical mutagenesis and strain 
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Biological conversion of cellulosic biomass to fuels and chemicals offers the high yields to products vital to 
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selection from wild strains, such 
as T. reesei QM9414 [5]. Cellulase 
150 L produced by Genencor was 
very effective because of enhanced 
levels of b-glucosidase [6,501] . 
Dramatic improvements in reduc-
ing glycosyl hydrolase costs by a 
factor of 20 to 30 was announced 
recently [7,8].

It is noteworthy that many micro-
organisms in nature, mostly bacteria 
and fungi, are capable of produc-
ing biomass-degrading enzymes. 
Cellulolytic microbes may evolve 
as individual degraders or as part 
of a ‘chain reaction’ in microbial 
communities of some ecosystems. 
Cellulolytic enzymes secreted by 
such microbe(s) are classes of gly-
coside hydrolases (GHs), including 
lignin-modifying catalysts in some 
cases. Enzyme and microbe combi-
nations vary in different biomass-
degrading ecosystems depending on 
the initial biomass source and envi-
ronmental factors. With emerging 
biotechnology tools, there is great 
potential to develop new enzyme 
sources that offer more desirable 
enzyme features, including higher 
specific activities with more bal-
anced synergism, better thermal 
stability, better resistance to envi-
ronmental inhibitors and improved 
combination of various enzymes 
(e.g., cellulase, hemicellulase, pec-
tinase and proteinase) activities that 
maximize sugar yields at low cost. 

Unfortunately, cellulosic etha-
nol technologies have not yet been 
commercialized, at least partly 
because releasing sugars from nat-
urally recalcitrant cellulosic mate-
rials is difficult [9,10]. The result 
is that high enzyme doses are 
needed, with the cellulase loadings 
of approximately 15 FPU per gram 
cellulose typically used to achieve 
economically viable sugar yields 
from pretreated biomass equivalent 
to approximately 30 g of enzyme 
per liter of ethanol made. Figure 1 

illustrates the relationship between the cost of enzyme 
protein production (US$/kg enzyme) and the amount 

that must be charged for ethanol ($/gallon ethanol) 
to cover the cost for different enzyme loadings that 
all achieve the same ethanol yield (data adopted from 
National Renewable Energy Laboratory report) [11]. 
Thus, to meet the enzyme cost goal ($0.10/gallon etha-
nol or less) of the DOE Biomass Program will require 
that enzymes cost less than $2/kg cellulase protein or 
strategies must be developed to substantially reduce 
the loadings needed for high yields, or some of both 
[12–14]. In addition, mechanisms of action and factors 
limiting hydrolysis effectiveness are not well known, 
and consequently limiting in many promising com-
mercial applications [15]. Improving the understanding 
of the structure and function of both lignocellulosic 
materials and their degrading enzymes will be invalu-
able to determining the roles of biomass pretreatment, 
hydrolysis and enzymes in influencing lignocellulosic 
biomass conversion and in developing appropriate strat-
egies to achieve high rates and yields with low amounts 
of enzyme.

Enzymatic hydrolysis is influenced by both structural 
features of cellulose and the mode of enzyme action. 
Due to the complexity of the cellulose substrate and the 
cellulase system, the mechanism of hydrolysis of cel-
lulose substrate is still not fully understood, although 
detailed knowledge of some aspects of enzyme struc-
ture, enzyme molecular properties and the ultrastruc-
ture of cellulose have been obtained through extensive 
study over the last few decades. Thus, this paper focuses 
on a review of the current understanding of key features 
of the pretreated biomass and glycosyl hydrolases that 
influence sugar release and suggests opportunities to 
further advance our understanding of lignocellulosic 
bioconversion by newly advanced technologies, such as 
genomics, proteomics and microscopy. 

Substrate-related factors 
This section of the review targets updating of recent 
advances in understanding structural characteristics 
of biomass and related enzyme features, and provid-
ing perspectives towards improvement in substrates 
for enzymatic hydrolysis. Lignocellulosic biomass has 
numerous structural features that make it very dif-
ficult to deconstruct enzymatically. The majority of 
biopolymers, including cellulose, hemicellulose and 
lignin, are not just individual units in a plant cell wall 
but are intimately interconnected [16]. Lignin and car-
bohydrates (e.g., cellulose and hemicellulose) form 
lignin–carbohydrate complexes [17]. Recent studies 
demonstrated that in grasses, polysaccharide–lignin 
crosslinking is mediated by ferulates attached primar-
ily to arabinoxylans. Ferulated hemicelluloses pro-
vide points of growth for lignin via ether bonds that 
anchor lignin to plant-wall polysaccharides and could 

Key terms

Enzymatic hydrolysis: Multi-step 
heterogeneous reaction in which 
insoluble cellulose is initially broken down 
at the solid–liquid interface via the 
synergistic action of endoglucanases and 
exoglucanases/cellobiohydrolases. This 
initial reaction is accompanied by further 
liquid-phase hydrolysis of soluble 
intermediates, that is, short 
celluloligosaccharides and cellobiose, 
which are catalytically cleaved to produce 
glucose by the action of b-glucosidase.

Cellulose: Predominant polysaccharide 
that makes up approximately 40–50% of 
cellulosic biomass in the form of linear 
fibrils of approximately 30–40 hydrogen-
bonded chains of b-(1,4) 
glucopyranosides with a native degree of 
polymerization of approximately 
10,000–15,000.

Pretreatment: The disruption of the 
naturally resistant structure of 
lignocellulosic biomass to make reactive 
intermediates (e.g., fermentable sugars) to 
biological processes.

Cellulase: Combination of enzymes that 
catalyze the reaction of water with 
cellulose to release shorter chains and 
ultimately soluble glucose sugar.

Glycoside hydrolases: Enzymes that 
hydrolyze a glycosidic bond between 
two adjacent saccharide groups or 
between a carbohydrate and a 
noncarbohydrate moiety.

Lignin: Makes up approximately 15–28% 
of lignocellulosic biomass; it is distinctly 
different from the other macromolecular 
components of lignocellulosic biomass. It 
is an amorphous, cross-linked and 3D 
polyphenolic polymer that is synthesized 
by dehydrogenative polymerization of 
three types of phenyl propanoid units, 
including monolignols: coniferyl, sinapyl 
and p-coumaryl alcohol.

Lignocellulosic biomass: Biomass 
feedstock mainly containing cellulose, 
hemicelluloses and lignin; usually 
including agricultural residues, woody 
crops, herbaceous energy crops and 
municipal solid wastes.

Genomics: Study of the genomes of 
organisms. This includes intensive efforts 
to determine the entire DNA sequence of 
organisms and fine-scale genetic 
mapping efforts. Also includes studies of 
intragenomic phenomena such as 
heterosis, epistasis, pleiotropy and other 
interactions between loci and alleles with 
the genome.
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contribute to recalcitrance [18–20]. The complete struc-
ture and compositions of lignin, which binds cellulosic 
fibers together in a composite structure and reduces 
the accessibility of cellulose to enzymes [21], is still not 
fully understood. To completely deconstruct these het-
erogeneous structures in the plant cell wall requires 
synergistic reactions of enzymes, such as cellulases, 
hemicellulases, accessory enzymes and lignin-modify-
ing enzymes. Our current knowledge is insufficient to 
understand the whole picture of enzymatic hydrolysis 
of cellulosic biomass, and most evidence available to 
date results from two approaches: purified enzyme(s) 
acting on purified substrates or mixtures of enzymes 
acting on thermo-chemically pretreated biomass. 

   � Characteristics of cellulose 
The main commercial purpose of enzymatic hydrolysis 
of cellulosics is to deconstruct cellulose and other car-
bohydrate polymers into fermentable sugars, including 
glucose and/or oligomers that can be further converted 
into valuable products through biological or chemical 
approaches. Although enzymatic hydrolysis of cellulose 
is complicated by existence of other components (e.g., 
hemicellulose and lignin) and their derivatives after pre-
treatment, it is essential to understand the effects of key 
features of cellulose itself on the rate and effectiveness 
of enzymatic hydrolysis. 

It is difficult to characterize native cellulose in the 
plant cell wall, due to its small size and the matrix of 
polymers (mainly hemicelluloses and lignin) closely 
interlinked with it. Cellulose can be considered as a 
composite material built from nanometer-scale micro-
fibrils. Recent studies using advanced imaging tech-
niques, such as atomic force microscopy (AFM), have 
revealed precise measurements and detailed cellulose 
surface structure in its native stages. Based on AFM 
studies of plant cell walls [22–24], the dimensions were 
measured as 3–5 nm, consistent with the 36-chain 
model of the cellulose elementary fibril (CEF) based 
on the proposed cellulose-synthase complexes (the 
rosettes) that contain 36 cellulose synthases. One of 
the interesting findings from AFM imaging was mac-
rofibrils only observed on the uppermost layer of the 
primary cell wall. The macrofibril appeared to consist 
of a bundle of CEFs that split at the end to form smaller 
bundles and eventually a single CEF. Each microfibril 
observed in mature primary cell walls contained only a 
single CEF and hemicelluloses associated with its sur-
face [25,26]. AFM images of maize cell walls from fresh 
cells further confirmed this observation [27]. Figure 2 
shows a schematic model of plant cell wall synthesis.

In this model, at least three types of cellulose syn-
thases (CesA subunits, a1, a2 and b) are required 
to spontaneously assemble the rosettes containing 

6 × 6 CesA enzymes [28]. Each rosette synthesizes a 
36-chain CEF. The estimated dimensions of CEFs are 
3 × 5.5 nm based on cellulose Ib structure, in agree-
ment with direct AFM measurements. A number of 
CEFs synthesized by rosettes with close proximity 
may form a bundle, the macrofibril. The deposition of 
other wall polymers, mostly hemicellulose, during cell 
growth, causes the macrofibril to split to form single 
microfibrils with hemicelluloses associated on their 
surfaces [25,26].

Substrates used in cellulase assays are primarily 
purified cellulose (e.g., Avicel or Sigmacell) with small 
proportions of other polysaccharides, mainly hemicel-
luloses from higher plants. Regardless of the origin and 
purification methods used in their preparation, the 
structural characteristics of purified 
cellulose vary in crystallinity, degree 
of polymerization (DP) and surface 
structure, which may significantly 
affect enzyme hydrolysis.

Crystallinity
Purified celluloses are micrometer-
sized particles composed of nano-
meter-sized microfibrils (Figure 2). 
Generally, these cellulose particles 
are believed to consist of crystalline, 
paracrystalline (disordered) and 
amorphous structures. Historically, 
amorphous cellulose has been 
reported to be rapidly degraded to 
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Figure 1. Cost of cellulase for ethanol production versus cost of protein at 
different loadings that all achieve the same ethanol yield.
Data from [16].

Key terms

Proteomics: Large-scale study of 
proteins, particularly their structures, 
activities, modifications, localization and 
interactions of proteins in complexes. 
Substantial amounts of proteins/
enzymes are involved in the 
lignocellulosic biomass degradation. 

Hemicellulose: Make up approximately 
20–30% of biomass, exhibit a much 
broader distribution of sugars and are 
frequently branched and essentially 
amorphous polysaccharides. These 
polysaccharides are usually associated 
with cellulose, often hydrogen bonded 
to cellulose. These branched 
polysaccharides are composed of 1, 
4-linked b-d-hexosyl residues. 
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cellobiose by cellulases, while the hydrolysis of crys-
talline cellulose is much slower. Thus, some authors 
proposed that hydrolysis rates depended on cellulose 
crystallinity [29–32]. Although rates have been found to 
slow with increasing crystallinity of cellulose in some 
studies [33–35], others found the opposite effect [36–38]. 
It is expected that crystallinity should increase with 
cellulose hydrolysis as a result of more paracrystalline 
and amorphous cellulose removal [38–40]. However, 
no significant change in crystallinity during cellulose 
hydrolysis was reported in some studies [41,42]. In some 
reports, cellulose crystallinity was not considered to 
affect efficient hydrolysis [37,43–49].

Cellulose crystallinity was also reported to play a role 
in enzyme adsorption, which can be correlated with 
hydrolysis rates and yields. Increased hydrolysis rates 
and yields (>100 times) were shown to be related to the 
higher capacity of amorphous cellulose than crystalline 
cellulose for cellulases [35,39,50–55]. Many results showed 
that enzyme adsorption, including the complete glyco-
syl hydrolase system, cellulose binding module (CBM) 
and individual enzyme components, generally declined 
as cellulose crystallinity increased. Recently, Joeh and 
co-workers showed that crystallinity greatly impacted 
the adsorption of Cel7A (CBHI), leading to decreased 
extent of hydrolysis [55]. Hall and co-workers indicated 
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Figure 2. Model of plant cell wall cellulose elementary fibril and its synthesis. The dimensions of cellulose elementary fibril are 
estimated as 3 × 5.5 nm. 
Adapted with permission from [29].
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that the initial enzymatic hydrolysis 
rate increased with decreasing crys-
tallinity index, while the adsorbed 
enzyme concentration stayed con-
stant [42]. In addition, different cel-
lulase components have been shown 
to have different adsorption capaci-
ties and activities for cellulose [50,51]. 
Endoglucanase I (EGI), known to 
attack and adsorb preferentially on 
amorphous cellulose, appeared to 
have an average adsorption capac-
ity and activity greater than CBHI 
on both types of cellulose studied. 
A similar pattern was described 
for EGI by Ding and Xu [56]. 
Furthermore, Banka and Mishra 
observed that crystallinity increased 
adsorption of a nonhydrolytic pro-
tein named fibril-forming protein 
from T. reesei [57]. Such results indi-
cate that cellulose crystallinity has 
important effects on nonhydrolytic 
enzyme components, which can be 
essential to effective enzymatic hydrolysis of cellulose.

Cellulose crystallinity may not only affect cellu-
lase adsorption but may also impact the effectiveness 
of adsorbed cellulase components. The literature has 
shown that cellulose crystallinity affects the synergism 
among cellulase components [42,51,58–66]. Hoshino et al. 
found increased synergism between CBHI and endoglu-
canase II (EGII) from T. reesei with increased crystallin-
ity and the highest synergism between CBHII and EGII 
at a crystallinity index approximately 1.0. In another 
study, Igarashi and co-workers showed that nature of 
the crystalline cellulose polymorph affected the hydro-
lytic activity of adsorbed CBHI [67–69]. Moreover, 
Mizutani et al. [70] and Gama and Mota [71] showed that 
the impact of surfactant in enhancement of saccharifica-
tion is influenced by the crystallinity of pure cellulose.

A few studies investigated the relationship between 
cellulase processivity and crystallinity. The processiv-
ity of CBHI, a dominant enzyme of the Trichoderma 
system, was shown to be affected by cellulose crystal-
linity. A rough estimate of processivity, determined by 
the ratio of cellobiose to glucose, was reported to be 23 
and 14 cellobiose units for bacterial microcrystalline cel-
lulose (BMCC, CrI ~>85%) and amorphous cellulose, 
respectively [72]. In another study, processivity values 
for CBHI from T. reesei were reported to be 88 ± 10, 
42 ± 10 and 34 ± 2.0 cellobiose units for bacterial cel-
lulose CrI ~88), BMCC (CrI ~92) and endoglucanase-
pretreated bacterial cellulose (unknown CrI), respec-
tively [73]. Further studies are needed to confirm and 

elucidate the influence of crystallinity on the effective-
ness of processive or pseudo-processive enzymes from 
various microorganisms.

Degree of polymerization
Several studies and literature reviews discuss the change 
in DP of insoluble and soluble cellulose after hydrolysis 
with a complete set of cellulases or its purified com-
ponents [43,44,51,52,74–80]. However, the understanding 
of the impact of cellulose chain length on hydrolysis 
is still limited. Sinistyn et al. showed that reduction 
in DP of cotton linters by g-irradiation, while keeping 
crystallinity index constant, had negligible impact on 
the hydrolysis rate [35]. A recent kinetic study by Zhang 
and Lynd [81] found that a decrease in cellulose DP had 
less effect in accelerating hydrolysis than an increase in 
accessibility of b-glycosidic bonds as generally measured 
by the maximum amount of cellulase adsorbed on cel-
lulose. For soluble cellulose, Nidetzky et al. showed that 
the initial velocity of cello-oligosaccharides degraded by 
CBHI increased with DP up to cellohexose and then 
remained constant [82]. Similar effects of DP of soluble 
cellodextrins on CBHII and EGI activity were also 
reported [51]. Furthermore, b-glucosidase activity was 
reported to decrease as DP was reduced [83,84]. However, 
no information is available on the effect of insoluble 
cellulose DP on the catalytic efficiency of cellulases 
except that higher DP could result in higher synergy 
between CBHI and EGI [65,81,85,86]. Furthermore, cel-
lulose DP may affect the processivity index, and full 
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processivity of CBHI may not be realized with short 
cellulose chains [61]. Limited information is available 
in the literature on the effect of cellulose DP on cellu-
lase adsorption. Kaplan et al. showed a significant drop 
in cellulase adsorption resulting in reduced hydrolysis, 
with a change in DP along with some ring openings 
of cotton cellulose due to withering; however, crys-
tallinity was not affected much [87]. Given the typi-
cally large amount of CBHI in cellulase (>65%) and 
its preferences [82,88–91], one could quickly conclude 
that DP reduction should improve hydrolysis effective-
ness by making more ends available to CBHI and be a 
promising target to enhance hydrolysis rates and yields, 
provided the enzyme formulation is adjusted to take 
advantage of the lower DP. 

Accessible surface for cellulase
Cellulose accessibility to cellulases is limited by the 
structure of cellulose microfibrils that are believed to be 
nanometer-sized (Figure 2). Crosslinking among chains 
of cellulose fibers, coupled with their being imbedded 
in a matrix of polysaccharides involving lignin and 
other polymers, provides extra rigidity in native plant 
cell walls but complexity for enzymatic digestion [92]. 
Although extensive modification may occur during cel-
lulose purification, the diameter of cellulose microfibrils 
may remain approximately 3–5 nm in plant cell walls, 
the same as in the original source, but the length of 
these microfibrils may be significantly reduced to several 
hundred nanometer (Figure 2). The accessibility of cel-
lulose to cellulases may refer to two levels of limitations, 
with one being the face of crystalline cellulose available 
to cellulases binding, with the carbohydrate-binding 
module of CBH I attaching to only the hydrophilic face 
[93–95]. The second limitation is the anatomical structure 
of the plant cell wall, which may also affect accessibility 
for cellulases, specifically the pores existing in the plant 
cell walls that allow cellulases to enter into the ‘boxes’ of 
plant tissue to access the surface of cellulose microfibrils. 
One of the impacts of pretreatment could be to enlarge 
pore sizes to enhance cellulase penetration into biomass. 

Based on the premise that enzymatic hydrolysis of 
cellulose is a surface reaction, available surface area 
of cellulose for cellulase attack should be one of the 
most influential structural features of biomass that 
influences cellulase adsorption on the cellulose sur-
face and subsequent enzymatic breakdown [16,96–101]. 
Many papers have discussed available pore volume and 
specific surface area in this context [51,44]. Accessibility 
can be also correlated to other substrate-related factors, 
such as cellulose crystallinity or depolymerization. 
However, some studies offered evidence of other sub-
strate features, including pore volume [44,101–105] and 
particle size [37,103,106–108] affecting cellulose hydrolysis. 

Nevertheless, because some bacterial cellulases, such as 
cellulosome, a multienzyme complex with a size approx-
imately 100 times that of individual fungal cellulases, 
hydrolyze cellulose at a higher rate than fungal cellu-
lases, micropores appear to be less important [50,109]. 
Furthermore, it was observed that cellulase components 
did not penetrate into the pores [110], and no relation was 
observed between pore volume and digestibility [111]. A 
limited to negligible effect of particle size on cellulose 
adsorption [112–114] and cellulose hydrolysis [47,115] was 
reported, but the possibility of an increase in the rate of 
cellulose fragmentation with smaller particles cannot be 
ruled out. In contrast, it was shown that larger particles 
could be inhibitory to effective hydrolysis [116]. On the 
other hand, various studies on the effect of DP and 
crystallinity on enzymatic digestibility demonstrated 
that susceptibility of pretreated substrates to enzymatic 
hydrolysis could not be easily predicted from differences 
in cellulose DP or crystallinity [37,117], possibly due to 
the complexity of real cellulosic substrates. However, 
accessible surface area can provide a useful perspective 
on these features and help identify characteristics that 
can be changed by pretreatment.

Change in cellulose reactivity & enzyme functionality 
with conversion 
The dramatic decline in overall enzymatic hydroly-
sis rates and rates per amount of adsorbed enzyme as 
hydrolysis progresses is responsible for low yields, and 
long processing times cannot be attributed to just prod-
uct inhibitory effects. However, the mechanism still 
remains unclear [118,119]. In addition to enzyme-related 
factors, such as thermal instability of cellulases [120–123], 
products inhibition [120,124–128], enzyme inactivation 
[125,129–135], enzyme slowing down/stopping [136], sub-
strate-related factors, including substrate transformation 
into a less digestible form [137], and the heterogeneous 
structure of the substrate [137,138], have been proposed 
to account for such phenomena. At one time, the drop 
in rate was explained by declining substrate reactivity as 
the more easily reacted material was thought to be con-
sumed preferentially [137], but other reports concluded 
that substrate reactivity was not the principal cause 
of the long residence time required for good cellulose 
conversion [136].

‘Interrupt’ and ‘restart’ experiments were conducted 
to identify factors that control cellulose hydroly-
sis [136–141]. A new restart approach, involving protein-
ase treatment to remove cellulases followed by pro-
teinase inhibitors to deactivate the proteinase before 
restarting cellulose hydrolysis at the original conditions, 
was developed to understand reactivity loss during 
the dynamic process of enzymatic hydrolysis of cel-
lulose [142]. The resulting hydrolysis rate and the rate 
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per adsorbed enzyme of Avicel were nearly constant 
with changing conversion for these restart experi-
ments, but declined in continual hydrolysis. Thus, the 
drop in hydrolysis rate for continual cellulose diges-
tion could not be attributed to changes in substrate 
reactivity, while other enzyme-related effects such as 
enzymes slowing down by getting ‘stuck’ or ‘jamming’ 
could be responsible [142,143]. For this restart approach, 
the cellulose CrI increased slightly with cellulose con-
version to approximately 80% within 5 h [144]. AFM 
images of the interrupted hydrolyzed Avicel showed 
that the somewhat rough surface of the original Avicel 
became smoother and flatter as enzymatic hydrolysis 
progressed (Figure 3). The new ‘restart’ approach allows 
one to revisit many aspects of enzymatic hydrolysis of 
cellulose needed to advance the understanding of the 
dynamic interactions between enzyme and cellulose.

   � Derived insoluble matter distribution
Cellulose, hemicelluloses and lignin are the major 
polymers in the plant cell walls, and any change in or 
removal of these components would be expected to 
consequently affect enzymatic digestibility. However, 
experimental results have been rather inconsistent. 
Grohmann et al. and others showed direct relationships 
between hemicellulose removal and glucose yields from 
cellulose [111,145–150], but other reports do not support 
a role for hemicellulose removal in changing cellulose 
digestibility [151–154]. Similarly, conf licting conclu-
sions have been reached on the importance of lignin 
removal in enhancing cellulose conversion [102,155–157]. 
All plant cell wall constituents are modified to different 
extents by pretreatments, depending on the technolo-
gies and conditions applied, making it challenging to 
deduce whether altering cellulose microfibrils, removing 
hemicelluloses, modifying or relocating lignin, or other 
effects on the substrate are responsible for improving 
enzyme effectiveness.

Hemicellulose
The enzymatic digestion of cellulose has been shown 
to significantly improve with hemicellulose removal, 
thereby suggesting that hemicellulose provides the 
key barrier to cellulose breakdown by enzymes [157]. 
However, simultaneous lignin alteration during pre-
treatment can confound the role of hemicellulose 
solubilization and modification [102,155,158,159]. From 
a more applied perspective, some pretreatments such 
as ammonia fiber expansion (AFEX) produce highly 
digestible cellulose without removing any significant 
amounts of hemicellulose [160–162], although AFEX 
may modify the chemistry of hemicelluloses. Less 
attention has been given to the degree of acetylation 
of the substrate. Hemicellulose chains are extensively 

acetylated in many types of biomass, and deacetylation 
was reported to triple cellulose digestibility, with some 
differences reported in the degree of removal needed to 
be effective [163,164]. One study showed that this effect 
appeared to become less important beyond removal of 
75% of the acetyl groups, while another study revealed 
continued improvements up to full removal of hemi-
cellulose [156,165]. Grohmann and co-workers showed 
that removing acetyl esters from aspen wood and wheat 
straw made them five to seven times more digestible. 
Kong et al. observed a major effect on cellulose digest-
ibility by the removal of acetyl content of aspen wood 
while preserving lignin and polysaccharides [165]. Chang 
and Holtzapple applied similar methods as above but 
showed that removal of acetyl bonds is less important 
than crystallinity reduction and/or lignin removal [166]. 
In addition, a study by Weimer et al. suggested that inti-
mate association of xylan and cellulose does not inhibit 
biodegradability of polysaccharides [167]. Removing 
hemicellulose also removes acetyl groups and usually 
alters the form of lignin left, making it difficult to 
isolate the factors most influential in improving per-
formance. Unfortunately, it is still debatable whether 
hemicellulose removal or the breakdown of the cross-
linked network of polysaccharides and bonds among 
them is responsible for enhanced digestion of cellulose 
in pretreated biomass.

Studies such as these lead us to believe that even if 
cellulose is made completely accessible to enzymes, they 
would not be able to hydrolyze cellulose unless the net-
work of biomass components including hemicellulose 
and acetylation is disrupted [168–170]. Jeoh and co-work-
ers observed increased cellulose accessibility, as mea-
sured by the adsorption of fluorescent labeled CBHI, 
and an increase in hydrolysis with the extent of xylan 
removal [55,171]. Pan et al. suggested that acetyl groups in 
pulp might restrict cellulase accessibility to cellulose by 
inhibiting productive binding, which might be caused 
by increased diameter of cellulose and/or changed 
hydrophobicity [168]. However, there is not much evi-
dence as to whether selective hemicellulose removal or 
deacetylation impact cellulase adsorption. In addition, 
because recent results showed xylooligomers are strong 
inhibitors of cellulase, their release during enzymatic 
hydrolysis could substantially slow hydrolysis, mak-
ing their removal in pretreatment important [172,173]. 
Deacetylation may indirectly affect cellulase effective-
ness in enzymatic hydrolysis of lignocellulosics because 
the removal of acetyl and other substituents from xylan 
could increase xylan digestibility by xylanase [156,174–178] 
and result in increased cellulose digestibility [179–182]. 
Thus, although its role in enhancing cellulose digestion 
is ambiguous, xylan removal during pretreatment may 
be desirable for a number of economic and technical 
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reasons such as higher recovery of xylose, less inhibi-
tion by xylooligomers and less need for hemicellulose 
degrading and accessory enzymes [183–185].

Lignin
Lignin binds cellulosic fibers together in a composite 
structure with excellent properties, but also reduces the 
accessibility of cellulose to enzymes [21]. Various studies 
reported cellulose hydrolysis was improved with increas-
ing lignin removal, although differences were reported 
in the degree of lignin removal needed [44,102,157,186]. 
The ratio of syringyl to guaiacyl moieties in lignin was 
also considered to have important effects on digest-
ibility [187], yet the importance of lignin in limiting 
hydrolysis has been difficult to determine. One of the 
most significant limitations is the effect of lignin on 
fiber swelling and its resulting influence on cellulose 
accessibility [116,188,189]. Lignin has been claimed to 
depolymerize and then repolymerize during hemicel-
lulose hydrolysis by pretreatment, although no doubt in 
a different morphology that could change its impact on 
cellulose digestion [117,190–192]. The removal of lignin not 
only increased cellulose accessibility but also allowed 
more cellulase action [157]. Lignin and its derivatives 
were reported to precipitate and bond with protein [16], 
and condensed lignin was reported to adsorb protein 
from aqueous solutions [193]. Thus, it appears that lignin 
could physically and chemically resist cellulose attack 
by enzymes. Lignin not only plays a very important 
role in irreversible cellulase absorption but also acts as 
a barrier to cellulase, limiting hydrolysis efficacy [194]. 
Thus, lignin removal may both open more space for 
enzymes and reduce enzyme nonspecific absorption 
on lignin [157]. Low levels of lignin have been shown 
to enhance cellulose hydrolysis due to a physical sepa-
ration of microcellulose fibrils enhancing cellulase 
access/activity [16,55,157]. Lignin modifications in trans-
genic biomass have resulted in decreased recalcitrance 
to saccharification with improved fermentable sugar 
yield [18].

Our recent findings suggest that enzymatic digest-
ibility of cellulose is related to both hemicellulose and 
lignin removal. For example, similarly high enzymatic 
digestion was observed for corn stover pretreated at opti-
mized conditions for several CAFI pretreatments, even 
though hemicellulose and lignin removal varied con-
siderably among the solid residues from each pretreat-
ment technology [21,195]. Relocation and/or modifica-
tion of lignin on the solid substrates could lead to lower 
degree of observed final lignin removal [16]. Although 
some demonstrated a linear relationship between lignin 
removal and cellulose digestion, others showed little 
or no effect of lignin removal on cellulose digestibil-
ity [196]. For example, AFEX-pretreated solids, in which 

hemicellulose and lignin removal were very limited, 
needed less cellulase to achieve similar hydrolysis per-
formance than dilute acid pretreated solids, which had 
little hemicellulose left and most of the original lignin 
content [160]. Overall, lignin modification seems more 
important than hemicellulose dissolution, with the lat-
ter perhaps just providing a convenient marker of lignin 
alterations that improve cellulose digestibility [194].

Such information leads us to believe that lignin 
modification is vital to enhance cellulose digestibility 
and that lignin removal provides even greater benefits 
[157]. Removing lignin enhances cellulose accessibil-
ity and reduces nonproductive binding of enzymes, 
thus improving enzymatic hydrolysis performance [16]. 
Interestingly, recent lignin-blocking technology brings 
new insight into disrupting the original cellulose–lig-
nin–hemicellulose structure and fully liberating highly 
susceptible cellulose and hemicellulose for enzymes to 
hydrolyze, rather than pursue complete removal of lig-
nin and its derived compounds [16,197].

Although literature regarding the effect of lignin on 
cellulose hydrolysis is abundant, the role of lignin in 
enzymatic hydrolysis of heterogeneous cellulosic bio-
mass is still unclear. However, it may be advantageous to 
remove lignin before hydrolysis to enhance the technical 
and economic prospects of cellulose saccharification, 
because lignin will lead to less available enzyme due to 
unproductive binding, may be inhibitory to fermenta-
tion [50] and may cause mixing problems at higher solids 
loadings [198,199]. It is not clear whether lignin removal 
or disruption of its tight association with carbohydrates 
is necessary. Grabber and co-workers suggested that 
inhibition of fungal hydrolases is not affected by the 
composition of lignin [200]. However, lignin concentra-
tion and its crosslinking with feruloylated xylans greatly 
affect degradability of cell walls [201,202]. The negative 
impact of lignin concentration on cell wall digestibility 
of tobacco stems was observed by Sewalt et al. in another 
study [203].

Ooshima and co-workers observed that dilute acid 
pretreatment at higher temperatures led to shrinking 
and agglomeration of lignin that increased cellulase 
adsorption on cellulose [134]. Similar observations of 
lignin melting and its relocation are affirmed by others 
as well [204,205]. In a recent study, Selig et al. explained 
that droplets of lignin, formed during high temperature 
dilute acid or water only pretreatment, may migrate to 
the surface and impede cellulase adsorption on cellu-
lose [206]. Yuldashev et al. observed that the amount of 
cellulase on the surface of cotton stalks (cellulose: 44% 
and lignin: 26.4%) was lower than the milled cotton 
stalks (cellulose: 92% and lignin: 0.6%), leading to a 
drop in conversion; however, lignin did not inactivate 
free or bound enzymes [207]. In another study, Ishihara 
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and co-workers showed that lignin slows down enzyme 
adsorption but does not restrict the conversion of car-
bohydrates in steamed shirakamba wood [208]. Limited 
delignification of wheat straw by sodium hydroxide 
was shown to result in increased cellulase adsorption by 
Estrada et al. [209]. Conversely, Mooney et al. studied 
the effect of amount of lignin in four different types 
of pulp on cellulase adsorption and concluded that the 
proportion of lignin did not influence cellulase adsorp-
tion [210]. However, Selig and co-workers showed that 
lignin droplets deposited on cellulose may interact with 
water and form a boundary layer impeding cellulase 
movement [205]. Furthermore, lignin linkages with cel-
lulose may presumably impede the processive action 
of cellulase. Although lignin may reduce the amount 
of active enzyme available for cellulose hydrolysis, its 
impact on the effectiveness of adsorbed cellulase still 
requires clarification.

   � Derived soluble matter distribution effects
Much attention has been paid to removing hemicellu-
lose and lignin from biomass solids as obvious physical 
barriers to cellulose access by enzymes, but little work 
has been devoted to understanding how soluble matter 
(e.g., sugar, sugar oligomers, sugar degradation prod-
ucts and lignin-derived compounds) released during 
pretreatment and enzymatic hydrolysis affect enzymatic 
hydrolysis of cellulose. In addition, in most research, 
pretreated cellulosic biomass solid was separated from 
the hydrolyzate and thoroughly washed to get a clear-
cut evaluation of the effect of pretreatment on cellulose 
digestibility independent of dissolved inhibitors. On the 
other hand, enzymatic hydrolysis of pretreated whole 
slurry, including both pretreated solids and liquor (at 
least partially if not all of the liquor), will likely be nec-
essary to lower capital and operating costs. Even with 
washed pretreated solids, the concentration of soluble 
matter released from the pretreated solids during enzy-
matic hydrolysis becomes more significant as the solid 
loadings increase. However, it was reported that cellu-
lose conversion by enzymatic hydrolysis was reduced 
when pretreated solids were not washed [211], pretreat-
ment hydrolyzate was added back to the pretreated sol-
ids [212] or the whole slurry (i.e., pretreated solids and 
hydrolyzate) was enzymatically hydrolyzed [213–217]. 
These results suggest that compounds in the pretreat-
ment hydrolyzate have inhibitory effects on enzymatic 
hydrolysis of cellulose. 

Research revealed that some compounds in the pre-
treatment hydrolyzate, which usually contains soluble 
lignin, oligomeric sugars primarily from hemicellulose, 
sugars, and lignin degradation products, had profound 
inhibitory effects on cellulase and microbial activi-
ties [175,218–221]. Kim et al. showed that effluent from 

ammonia-recycled percolation pretreatment of corn 
stover, containing xylooligomers, soluble lignin, sugar 
and lignin degradation products, inhibited cellulase and 
microbial activity significantly [222]. However, little was 
known about exactly which soluble compounds from 
hemicellulose, lignin and other biomass components 
affect enzymatic hydrolysis, or how they acted. However, 
recent work by Kumar and Wyman revealed that xylo-
oligomers strongly inhibit cellulase action [176], and a 
follow-on study showed that inhibition by xylooligomers 
was stronger than by glucose or cellobiose, with longer 
chained xylooligomers having the greatest impacts [175]. 
This research also showed that soluble xylooligomers 
had strong inhibitory effects on cellulases and such 
effects increased with concentration [175]. It was also 
reported that soluble products from xylan, including 
xylooligosaccharides and xylose, are significantly more 
inhibitory to glucan hydrolysis even though xylan and 
pectin inhibited glucan hydrolysis [223]. Xylooligomers 
were found to significantly inhibit cellulase adsorption 
onto Avicel (Shi et al., Unpublished Data). Other sugars 
from hemicellulose, such as mannose and galactose, 
were found to be inhibitory to cellulases and b-gluco-
sidase [224]. Another study identified sugars in pretreat-
ment hydrolyzate as the primary inhibitor to enzymatic 
hydrolysis of dilute acid pretreated whole slurry, while 
other soluble compounds, including acetic acid, phe-
nolic compounds and furans, only slightly inhibited 
enzymatic cellulose hydrolysis [225].

Soluble lignin derivatives were reported to affect not 
only microorganisms but also enzymes such as cellu-
lases and b-glucosidases [226–238]. Mendels and Reese 
found that substituted phenols had moderate inhibition 
on cellulases [233]. Panagiotou and Olsson tested mul-
tiple compounds (including furans, phenols and low 
molecular weight acids) and reported formic acid as the 
strongest inhibitor to cellulases by complete inactivation 
of enzymes [239]. Because the lignin preparation used in 
the study partially dissolved, the observed inhibition of 
cellulases was believed to be due to not only cellulase 
adsorption on the major particulate lignin component 
but also on solubilized small-molecular lignin com-
pounds [226]. Soluble phenol compounds, including van-
illin, syringaldehyde, trans-cinnamic acid and hydroxy-
benzoic acid, were reported to inhibit cellulose hydrolysis 
in wet cake by endo- and exo-cellulases, and cellobiose 
hydrolysis by b-glucosidase [223]. In this study, vanillin 
showed strongest inhibition on the mixture of Spezyme 
CP and Novozyme 188, while hydroxybenzoic acid had 
the greatest inhibition of these individual commercial 
enzymes. On the other hand, soluble lignin degradation 
aldehydes (vanillin, syringaldehyde and 4-hydroxybezal-
dehyde) or corresponding carboxylic acids were reported 
to have minor inhibitory effects on cellulases [221].
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Enzyme-related factors
Enzymatic hydrolysis of cellulose, typically character-
ized by an insoluble reactant (cellulosic substrate) and 
a soluble catalyst (enzymes), is not only influenced by 
structural features of the solid substrate but also by 
enzyme-related factors, such as enzyme source, prod-
uct inhibition, thermal inactivation, activity balance 
for synergism, specific activity, nonspecific binding, 
enzyme processibility and enzyme compatibility. Due 
to the complexity of both the cellulose substrate and 
the cellulase system, the mechanism of cellulose hydro-
lysis is still not completely understood, although some 
knowledge of enzyme structure, enzyme molecular 
properties, fibers and cellulose ultrastructure has been 
obtained through extensive study over the decades. 
Since many enzyme-related factors have been exten-
sively reviewed  [240–243], we will focus more on the 
enzyme source, enzyme-specific interaction with cellu-
losic substrates, synergistic effects of glycosyl hydrolases 
and strategies to improve enzyme effectiveness.

   � Features of glycosyl hydrolases from 
different microbes
In order to significantly improve the efficiency of 
enzymatic hydrolysis of cellulosic biomass and lower 
costs, approaches have been taken to find more robust 
enzymes and advance the understanding of enzyme 
interactions with cellulosic biomass. Different sets of 
hydrolytic enzymes, such as cellulases, hemicellulases, 
accessory enzymes to attack hemicellulose debranch-
ing, phenolic acid esterases and ligninases for lignin 
degradation/modification are required for complete 
deconstruction of the various components of lignocel-
lulosic biomass [244]. However, it is not well known 
how the glycosyl hydrolases and their associated 
enzymes/proteins function together to breakdown lig-
nocellulosic biomass. Diverse microorganisms, includ-
ing bacteria and fungi, can produce various glycosyl 
hydrolases for biomass conversion and deconstruc-
tion. In nature, lignocellulosic biomass is completely 
deconstructed by a mixture of glycosyl hydrolases from 
various microbes in specific communities, such as the 
hindgut of termite, the rumen of cows, various ligno-
cellulosic biomass composts and the extreme environ-
mental niches. Those anaerobic or aerobic microbial 
communities may consist of only bacteria, only fungi, 
or bacteria and fungi together [245]. Selected microbial 
strains that have been explored for various glycosyl 
hydrolase applications and their characteristics are 
listed in Table 1.

These microbes were isolated from different environ-hese microbes were isolated from different environ-
mental niches and grouped into aerobic or anaerobic 
bacteria or fungi on the basis of their growth condi-
tions. The glycosyl hydrolases have evolved different 

properties such as thermal, acid or alkaline tolerance 
under unusual culture environments. Based on their 
protein structures, the glycosyl hydrolases are further 
classified into four groups: multienzyme complex (cel-
lulosome) systems, noncomplex cellulase systems, and 
hemicellulase and ligninase systems. Since the cellu-
losome system in the anaerobic thermophilic bacte-
rium Clostridium thermocellum was first identified in 
the early 1980s by Bayer, Lamed and their colleagues 

[246,247], substantial progress has been realized in under-
standing the protein complex, characteristics, genes 
governing formation of protein complexes, diversity 
and their interaction with plant cell walls. So far, 
the cellulosome system is found only in anaerobic 
microbes. Many elegant reviews have discussed these 
complex cellulase systems [248–253]. Cellulosomes have 
several unique features: efficient nanomachines to 
deconstruct plant cell wall polysaccharides, molecular 
integration of cellulases and hemicellulases into cellu-
losomal multienzyme complexes resulting from high-
affinity interaction between type I dockerin domains 
of the modular enzymes and type I cohesion modules 
of a noncatalytic scaffoldin, and a scaffoldin-borne car-
bohydrate binding module (CBM)  to attach to plant 
cell walls [252].

In contrast, noncomplex glycosyl hydrolases are 
found in all microbes, even those with cellulosomal 
systems. In this review, properties of the noncomplex 
glycosyl hydrolases and their interaction with cellu-
loses will be discussed in more detail. Noncomplex gly-
cosyl hydrolases have been extensively studied in the 
several filamentous fungi. Among these, Trichoderma 
and Aspergillus strains are well developed for industrial 
glycosyl hydrolase production with enzyme production 
conditions extensively optimized. Generally, T. reesei 
secreted at least two cellobiohydrolases (CBHI and 
CBHII), five to six endoglucanases (EGI, EGII, EGIII, 
EGIV, EGV, and EGVI), b-glucosidase (BGL I and II), 
two xylanases and various accessory hemicellulases [254]. 
The effectiveness of cellulase components acting on 
insoluble substrates, and especially crystalline cellulose, 
is affected by the proportion of these components, with 
some ratios being particularly effective due to their 
synergistic action [60,66]. Although the CBHI:EGI ratio 
of commercial cellulase preparations from T. reesei is 
typically approximately 4–5:1, recent studies suggested 
that the optimal enzyme ratio is affected by both pre-
treatment conditions and feedstock sources [255,256]. 
Although several studies validate that CBHI and EGI 
share common sites on cellulose, CBHI has higher 
binding capacity and affinity than EGI, and CBHII 
has separate binding sites than CBHI [56,257]. However, 
the influence of the molar ratio of these components 
on binding and/or of bound enzyme on synergism has 
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Table 1. Selected bacterial and fungal strains for glycosyl hydrase production.

Name Enzymes types Ref.

Bacteria (aerobic)

Acidothermus cellulolyticus NC/HC T [375]

Bacillus sp.
Bacillus pumilus
Bacillus substilis 
Bacillus agaradhaerens JAM-KU023

NC/HC
NC/HC 
NC/HC
NC/HC

M/AT
M/AT
M/T
T/A

[376]

[377,378]

[379]

[380]

Brevibacillus sp. strain JXL NC/HC T [381]

Cellulomonas flavigena NC/HC T/AT [382]

Cellulomonas fimi NC/HC M [273,383]

Geobacillus thermoleovorans NC/HC T/AT [384]

Paenibacillus campinasensis BL11
Paenibacillus strain B39

NC/HC
NC

T
T

[385]

[386]

Streptomyces sp. NC/HC M/T [387]

Thermoactinomyces sp. NC/HC T [388]

Thermomonospora curvata
Thermomonospora fusca

NC/HC
NC/HC

T
T

[389] 
[390]

Bacteria (anaerobic)

Acetivibrio cellulolyticus Cellulosome/NC M [391]

Bacteroides cellulosolvens Cellulosome M [267]

Clostridium acetobutylicum
Clostrium cellulolyticum
Clostrium cellulovorans
Clostrium josui
Clostrium papyrosolvens
Clostrium thermocellum

Cellulosome
Cellulosome/NC
Cellulosome/NC
Cellulosome
Cellulosome
Cellulosome/NC 

M
M
M
M
M
T

[392]

[393]

[394]

[395]

[396]

[246]

Ruminococcus albus 
Ruminococcus flavefaciens

Cellulosome
Cellulosome

M
M

[397]

[398]

Filamentous fungi (aerobic)

Acremonium cellulolyticus NC/HC M [399]

Acrophialophora nainiana HC/HC M [400]

Aspergillus acculeatus 
Aspergillus fumigatus 
Aspergillus niger 
Aspergillus oryzae

NC/HC
NC/HC
NC/HC
NC/HC

M
M/T
M
M

[401,402]

[403]

[404]

[405]

Fusarium solani NC/HC M [406]

Humicola grisea var. thermoidea NC/HC T [407]

Irpex lacteus NC/HC/LN M [408]

Penicillium funmiculosum 
Penicillium atrovenetum
Penicillium citrinum

NC/HC
NC/HC
NC/HC

M
T
M

[409]

[410]

[411]

Phanerochaete chrysosporium NC/HC/LN M [412]

Schizophyllum commune NC/HC M [413]

Sclerotium rolfsii NC/HC M [414,415]

Sporotrichum cellulophilum NC/HC T [501]

Talaromyces emersonii NC/HC T [416]

Thielavia terrestris NC/HC T [502]

Trichoderma koningii 
Trichoderma. reesei 
Trichoderma viride 

NC/HC
NC/HC
NC/HC

M
M
M

[406]

[406,417]

[418]

AT: Alkali tolerant; HC: Hemicellulase; LN: Ligninase; M: Mesophilic; NC: Noncomplexed cellulase; T: Thermophilic.
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received little attention. Nidetzky et al. showed that 
competitive rather than synergistic binding is observed 
for cellulase components [258]. On the other hand, Jeoh 
and co-workers concluded that the presence of Cel5A 
(endocellulase) of Thermomonospora fusca increased 
binding of an exocellulase and an endocellulase [259,260].

The rationale for both strongly and weakly bind-
ing enzymes is still unclear. Typical cellulases contain 
carbohydrate-binding modules (CBMs) [261] that are 
beneficial for enzyme efficiency by adhering to and 
sometimes possibly disrupting the substrate. CBMs 
from different enzymes and different taxonomic origins 
have been classified into families with similar amino 
acid sequences and 3D structures. CBMs of T. reesei 
CBH1, CBHII and EGI have aromatic residues that 
are critical for the binding of a CBM onto crystalline 
cellulose. Structural studies indicate that the spacing 
of the three aromatic residues coincides with the spac-
ing of every second glucose ring on a glucan chain. 
Therefore, it has been postulated that the aromatic 
amino acids of the CBMs form van der Waals’ interac-
tions and aromatic ring polarization interactions with 
the pyranose rings exposed on the surface of cellulose 
[262]. It was reported that the CBHI-CBM was capable 
of interacting with approximately ten cellobiose units 
(20 glucose units), and its catalytic core with approxi-
mately 36–54 cellobiose units [263]. Cellulases proces-
sivity, which involves CBM and catalytic domains of 
cellulases, was studied in some recent reports [264,265]. 
It is vital to understand how features of individual cel-
lulase components and their synergism dynamically 
change as enzymatic hydrolysis of cellulose progresses.

   � Synergistic enzyme effects on overall 
degradation processes
Synergistic phenomena are widely observed in cellu-
lose hydrolysis, with many forms reported and pro-
posed, including endoglucanase with exoglucanase, 

exoglucanase with exoglucanase, endoglucanase with 
endoglucanase [266], exoglucanase or endoglucanase 
with b-glucosidase [267,268], catalytic domain with 
CBM [269] or two catalytic domains [270], cellulose-
enzyme-microbe synergism [271] and spatial synergism 
for cellulase complexes (i.e., the cellulosome of C. ther-
mocellum) [241]. Such synergisms depend on cellulase 
sources or even substrate features. For example, syn-
ergism between the catalytic domain and CBM was 
reported for CenA of Cellulomonas fimi on cotton fibers 
but was not observed on bacterial microcrystalline cel-bacterial microcrystalline cel-
lulose (BMCC) [269]. Endo–endo type synergism was 
only reported in fungal cellulases of Gloeophyllum sepia-
rium and Gloeophyllum trabeum [266]. Cell–cellulase–
cellulose synergism has been shown for some cellulo-
lytic microorganisms such as C. thermocellum that have 
tightly cell-associated cellulase systems.

Extensive study of synergisms in noncomplex cellu-
lases showed that they act in a synergistic or coopera-
tive manner. The synergism among different cellulases 
depends on several factors including the nature of the 
substrate, enzyme compositions and concentration, cel-
lulase affinity for substrate, component stereospecific-
ity and the enzyme to substrate ratio. The synergistic 
interaction between cellulolytic components of T. reesei 
was reported high on crystalline cellulose but decreased 
as substrate concentration increased [272]. Endo–exo and 
exo–exo synergism was reported to be influenced by 
the nature of the substrate such as DP [272]. Studies of 
the size distribution during hydrolysis of BMCC and 
acid-swollen cellulose also showed that the behavior 
of endoglucanases and cellobiohydrolases (e.g., puri-
fied CenA, CenC and CbhA, and CbhB from C. fimi) 
varied with different substrates [273].

Complex cellulosomes consist of many cellulases 
and hemicellulases that function synergistically to 
degrade celluloses. For example, the cellulosomal sub-
units of C. thermocellum include 12 endoglucanases, 

Table 1. Selected bacterial and fungal strains for glycosyl hydrase production (cont.).

Name Enzymes types Ref.

Anaerobic fungi

Anaeromyces elegans
Anaeromyces mucronatus

NC/HC
NC/HC

M
M

[419]

[420]

Caecomyces CR4 NC/HC M [421]

Neocallimastic frontalis 
Neocallimastic hurleyensis
Neocallimastic patriciarum

Cellulosome 
Cellulosome
Cellulosome

M
M
M

[422]

[423]

[424]

Orpinomyces joyonii
Orpinomyces PC-2

Cellulosome
Cellulosome

M
M

[425]

[426,427]

Piromyces communis
Piromyces equi
Piromyces E2

Cellulosome 
Cellulosome
Cellulosome

M
M
M

[428]

[429]

[430]

AT: Alkali tolerant; HC: Hemicellulase; LN: Ligninase; M: Mesophilic; NC: Noncomplexed cellulase; T: Thermophilic.
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two cellobiohydrases, two exoglucanases, six xylanases, 
one chitinase, one lichenase and one mannanase [265]. 
Besides cellulosomes, noncellulosomal cellulases have 
been found in anaerobic microbes. However, atten-
tion to these noncellulosome cellulases is limited even 
though many noncellulosomal cellulases have been 
identified in cellulosomal microbes. Noncellulosomal 
cellulases may act synergistically with cellulosomes for 
cellulose degradation [240].

One of the major challenges for cellulase research-
ers is to elucidate the synergistic interactions between 
individual components [274]. In order to determine the 
degree of synergism between cellulase components, it is 
imperative that each component be purified to homo-
geneity, but aggregates and enzyme–enzyme com-
plexes between cellobiohydrolases and endoglucanases 
are extremely difficult to break into their constituent 
parts. Such complexity has been shown in cellulase 
from T. reesei [275]. On the other hand, some cellulase 
components, such as endoglucanases, are quite diffi-
cult to purify to homogeneity. More detailed models 
of cellulose degradation depend on firm knowledge 
of the kinetics and substrate specificities of individual 
cellulases. This area has been dramatically improved 
by introduction of a low molecular mass chromo-
genic 4-methylumbelliferyl-b-glycosides and by the 
expression of cloned cellulases genes in heterologous 
expression systems, such as Saccharomyces cerevisiae, 
which eliminate the problem of cross-contamination 
of enzyme purified to homogeneity [276–278]. We also 
need to consider the potential impacts of glycosylation 
on functions of glycosyl hydrolases in the heterologous 
expression systems. Furthermore, because synergistic 
effects between cellulases are influenced by the nature 
of the substrate, such as chemical composition, degree 
of crystallinity, DP and solubility, it is often challeng-
ing to compare research results in the literature using 
different substrates. Therefore, establishing a set of 
cellulose model substrates and widely employing such 
model substrates in the research community would cer-
tainly facilitate comparisons and help in understand-
ing mechanisms and kinetics of cellulose hydrolysis by 
cellulases. In addition, results from such studies would 
provide experimental evidence to validate computa-
tional simulations of synergetic interactions among 
enzymes/proteins and lignocellulosic biomass, a new 
research area to determine molecular dynamics of those 
complex interactions [279–284].

Besides synergism among cellulase components, the 
synergetic effects of various glycosyl hydrolases (e.g., 
core cellulases and enzymes involved in hemicellulose 
and lignin degradation) on lignocellulosic degradation 
have been evaluated [192,250,268,285–288]. Natural syner-
gism for lignocellulose degradation is very common, 

with examples being cellulolytic 
systems in insect hindguts [289–291], 
rumen microbial communities [292] 
and various environmental com-
posts. Those synergetic systems 
can consist of just bacterial or fun-
gal communities or communities 
of bacteria with fungi, and may 
include some contributions by the 
host. Metagenomic and functional 
ana lysis of hindgut microbiota of 
a wood-feeding higher termites 
showed the presence of a large, 
diverse sets of bacterial genes for 
cellulose and xylan hydrolysis [293]. 
Brulc et al. examined the gene-centric metagenomics of 
the complex fiber-adherent bovine rumen microbiome 
and compared it with termite hindgut microbiota [294]. 
The study indicated fundamental differences in the 
GH content that appeared to be diet driven for either 
bovine rumen (forages and legumes) or termite hind-
gut (wood). Both studies suggested that Clostridium 
cellulosomes are rarely present in both synergetic 
communities. In contrast, Clostridium species were 
major players in microbial communities in cellulolytic 
enrichment cultures from thermophilic compost [295]. 
Furthermore, fungal species found in enriched cultures 
were Piromyces species that produced cellulosomes as 
well. Interestingly, celY, encoding the noncellulosomal 
glycosyl hydrolase family 48 along with its cellulo-
somal systems, previously observed in Clostridium 
stercorarium was found in Clostridium straminisolvens 
and Clostridium clariflavum [296,297], and C. thermo-
cellum [298]. Clostridium stercoraium produced cellulo-
somes with a large number of hemicellulases but only 
two noncellulosomal cellulases, GH9 endoglucanase 
CelZ and GH48 exoglucanase celY, that synergistically 
degrade crystalline cellulose in biomass. This suggests 
that a stand-alone cellulosome may not be sufficient 
to degrade complex lignocellulosic biomass, and addi-
tional glycosyl hydrolases may be required for complete 
degradation. This hypothesis is supported by results 
from metagenome studies of cellulolytic enrichment 
cultures from different composts [295,299,300], in which 
a series of noncellulosomal bacteria coexisted with cel-
lulosomal Clostridium species. Therefore, the study of 
synergetic microbial communities may lead to potential 
breakthroughs in lignocellulosic conversion. Besides 
glycosyl hydrolases, associated proteins/enzymes and 
reagents may also play important roles in lignocellulosic 
biomass conversion. Thus far, tool-kits are insufficient 
to quantify the contribution of individual components 
to synergisms, further impeding improvements in 
enzyme characteristics. 

Key term

Metagenomics: Study of genetic 
material recovered directly from 
environmental samples, where the 
microorganisms are not easily cultured 
in laboratory or simply studied in their 
natural environment. In addition, 
metagenomics allows researchers to 
look at the genomes of all of the 
microbes in an environment at once, 
providing a ‘meta’ view of the whole 
microbial community and the complex 
interactions within it, such as 
lignocellulosic biomass degradation 
and conversion in certain 
environmental composites.
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   � Advanced technologies for discovery, 
characterization & over-expression of 
glycosyl hydrolases
DNA sequence technology for whole genome sequence 
of biocatalystic microbes 
The next-generation of DNA sequencing has the poten-
tial to dramatically accelerate lignocellulosic biomass 
conversion research by enabling inexpensive, routine 
and widespread comprehensive analyses of genomes, 
transcriptiomes and interactomes. To date, it has been 
applied to determine the whole genome sequence 
related to lignocellulosic biomass production and 
microbial systems for lignocellulosic biomass conver-
sion. Recent progress in whole genome sequencing of 
cellulosic biofuel crops has been reported in several 
publications [301–305]. Such genome sequence informa-
tion provides the foundation for improvements in plant 
oil and lignocellulosic biomass production in selected 
biofuel crops and especially regulation of complex lig-
nocellulosic biomass formation. Genome sequences also 
provide a foundation to examine the potential of heter-
ologous expression of microbial glycosyl hydrolases in 
biofuel crops, as discussed in a later section.

As noted above, both eukaryotic and prokaryotic 
microbes can produce glycosyl hydrolases. The eukary-
otic microbes mainly consist of various fungal species, 
with the most common being filamentous fungi. The 
genome sequence of T. reesei, which is widely used 
for commercial production of cellulases and hemi-
cellulases, was recently determined [306]. In addition, 
genome sequences have been determined for several 
other filamentous fungi, such as Phanerochaete chryso- chryso-
sporium [307], Aspergillus niger [308], Aspergillus fumiga-fumiga-
tus [309], Aspergillus nidulans [310], Aspergillus oryzae [311], 
Fusarium graminearum [312], Magnaporthe grisea [313], 
Neurospora crassa [314], Penicillium chrysogenum [315] 
and Ustilago maydis [316]. Such genome sequence data 
allow examination of carbohydrate-active enzymes 
(CAZymes) categorized into different classes and fami-
lies that include GHs, glycosyltransferases, polysaccha-
ride lyases, carbohydrate esterases and carbohydrate-
binding modules [601]. Those enzymes cleave, build 
and rearrange oligo- and poly-saccharides and play a 
central role in fungal metabolisms, which are crucial for 
biomass degradation. Each enzyme class has different 
families. Gylcosyl hydrolases, such as cellulolytic and 
hemicellulose-degrading enzymes, are classified with 
GHs and key enzymes for lignocellulosic biomass deg-
radation. So far, 118 families of GHs have been identi-
fied in all biological systems, a number that will grow as 
more genes are sequenced. More than 60 of them have 
been found in the filamentous fungi mentioned above. 
The 36 families of GHs found in all those filamentous 
fungi are GH1, 2, 3, 5, 6, 7, 10, 11, 13, 15, 16, 17, 18, 

27, 31, 32, 36, 37, 38, 43, 47, 51, 53, 54, 55, 61, 63, 67, 
72, 75, 79, 81, 92, 105 and 114. The exocellobiohydro-
lase I and II and EG I, II, III and IV belong to the GH 
families GH5, 6, 7, 12 and 61, while the hemicellulose-
degrading enzymes belong to the GH families GH10, 
11, 26, 29, 43, 51, 53, 54, 62, 67, 74 and 95. Sizes 
of CAZyme families for the 23 fungal genomes with 
complete sequences available, are summarized by class 
in Table 2.

P. chrysosporium, a white rot fungus that efficiently 
degrades lignin, has the lowest number of genes encod-
ing GHs, glycosyltransferases and carbohydrate ester-
ases among the filamentous fungi. T. reesei, an efficient 
plant polysaccharide degrader and an important model 
of biomass degradation systems, has surprisingly few 
genes encoding GHs compared with other filamentous 
fungi. Thorough inspection of the T. reesei genome 
revealed only seven genes encoding well-known cel-
lulases (endoglucanases and cellobiohydrolases), 16 
hemicellulase genes and five genes for pectin breakdown 
enzymes [306], the smallest set of genes for glycosyl 
hydrolases among plant cell wall degrading fungi. 

Rapid improvements in DNA sequencing technol-
ogy also provide powerful tools for metagenomics. 
Metagenomics, a relatively new field of genetic research, 
enables studies of organisms that are not easily cul-
tured in a laboratory as well as studies of organisms 
in their natural environment. Functional metagenom-
ics has been applied to examine cellulolytic systems in 
insects [289–291], rumen microbial communities [292,293] 
and various environmental composts (e.g., a switch-
grass-adapted compost community) [317], thermophilic 
biocompost [295] and agricultural soils [318]. All com-
munities contain different family sizes but all have the 
families GH1, 2, 3, 5, 8, 10, 28, 35, 38, 42, 43 and 53. 

With the significant interest in identification of novel 
enzymes for lignocellulosic biomass degradation and con-
version, functional metagenomics studies are being rap-
idly extended to expand the CAZyme families [319–323]. 
Although genes encoding the diversity of CAZyme fami-
lies have been identified via whole genome sequencing 
and metagenomics, detection of an open reading frame 
alone does not warrant actual production of protein, nor 
does it readily indicate the spatial and temporal expres-
sion of the gene in the biosystem. Therefore, new tech-
nologies in protein identification and characterization 
will be crucial for improvements in enzyme production, 
pathway optimization and biofuels crops. 

Mass spectrometry technology for secretomes 
& subcellular organelle proteomics of 
biocatalystic microbes
Mass spectrometry is a promising tool to assess rela-
tively abundant proteins, provided that the biosystem 
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or community is not too complex and has been sam-
pled deeply enough at the molecular level. In the last 
decade, mass spectrometry for proteomics has pro-
gressed radically and is now on par with most genomic 
technologies in high throughput and comprehensive-
ness [324,325]. So far, only a few proteomic studies have 
directly examined proteins and enzymes in the bio-
systems or communities involved in lignocellulosic 
biomass degradation under realistic environmental 
conditions. However, proteomics have been applied 
to examine production and dynamics of complex and 
noncomplex glycosyl hydrolases in different microbes 
rapidly. Recently, proteome ana lysis of fungal and 
bacterial involvement in leaf litter decomposition was 
conducted for a co-culture of two model organisms, 
Pectobacterium carotovorum (Gram-negative bacte-
rium) and A. nidulans (filamentous fungus), in culture 
with beech litter [326]. Proteome ana lysis revealed that 
most of the extracellular biodegradative enzymes (pro-
teases, cellulases and pectinases) in the culture were 
secreted by the fungus, while the bacterium produced 
only low levels of pectinases. Proteomic studies were 
also employed to examine lignocelluloses-degrading 
enzymes secreted by the white-rot softwood degrading 

fungus Phanerochaete carnosa grown on spruce and 
microcrystalline cellulose [327] and the cellulosome 
composition of C. thermocellum grown on the diluted-
acid pretreated switchgrass [328]. Proteins identified in 
the extracellular filtrates of P. carnosa included GH2, 
3, 5, 6, 7, 10, 11, 13, 15, 16, 18, 31, 35, 43, 47, 55, 61, 
92, glucuronoyl esterase (CE1), pectin esterase (CE8), 
polysaccharide lyase (PL14) and proteins corresponding 
to glyoxal oxidases, monooxygenase P450, peroxidases 
and multicopper oxidase. Results from C. thermocellum 
suggested that a coordinated substrate-specific regula-
tion of the cellulosomal subunit composition occurred 
to better suit the organism’s need for growth under spe-
cific carbon source conditions. Furthermore, the devel-
opment of methods for effective sample preparation for 
the extracellular proteome of the extreme thermophile 
Caldicellulosiruptor saccharolytucus suggested that two 
levels of sample purification were necessary to effec-
tively desalt the sample and provide sufficient protein 
identification [329]. More recently, mass spectrometry 
proteomics in combination with transcriptomics and 
genomics provided a powerful system to examine regu-
lation of glycosyl hydrolase production under different 
culture conditions [330–332].

Table 2. Sizes of CAZyme families by class identified in genome databases of 23 fungi.

Name Glycoside 
hydrolase

Glycosyl-
transferase

Polysacch-
aridelyase

Carbohydrate 
esterase

Carbohydrate-
binding module

Filamentous fungi

Aspergillus fumigatus 263 103 13 29 55
Aspergillus niger 248 114 8 25 38
Aspergillus oryzae 303 119 23 30 34
Aspergillus nidulans 252 90 21 33 41
Fusarium graminearum 243 110 20 42 61
Magnaporthe grisea 232 94 5 47 65
Neurospora crassa 174 78 4 22 42
Penicillium chrysogenum 219 102 9 22 49
Phanerochaete chrysosporium 166 57 14 14 N/A
Podospora anserine 230 89 7 49 97
Trichoderma reesei 200 103 3 16 36

Single cell fungi

Candida albicans 58 69 0 3 4
Candida dubliniensis 49 69 0 3 10
Candida glabrata 39 79 0 3 12
Cryptococcus neoformans 77 66 3 7 12
Saccharomyces cerevisiae 50 68 0 3 12
Schizosaccharomyces pombe 51 61 0 5 8
Debaryomyces hansenii 74 74 0 3 11
Eremothecium gossypii 44 57 0 2 9
Kluyveromyces lactis 46 62 0 2 11
Lachancea thermotolerans 45 59 1 2 11
Pichia pastoris 39 60 1 2 16
Pichia stipitis 53 67 0 4 7
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All glycosyl hydrolases are secreted into the external 
environment for lignocellulosic biomass degradation. 
Most of those glycosyl hydrolase proteins undergo 
post-translation modif ication with glycosylation 
playing important roles in enzyme function, stability 
and interaction with lignocellulose. During the last 
decade, mass spectrometry methods have also been 
developed to analyze glycoproteins in different organ-
isms [333–338]. The methods were mainly employed to 
analyze N- and O-glycosylation sites and glycan struc-
tures in several glycosyl hydrolases (endoglucanase I, II 
and exoglucanase I, II), mostly from T. reesei [339–342]. 
Some evidence indicated that glycosylation also occurs 
in bacterial cellulosomes [343,344]. More and more 
studies indicate that glycosylation plays an impor-
tant role in glycosyl hydrolase function and biomass 
conversion and is influenced by different organisms 
and culture conditions [345–347]. However, thus far, no 
studies have globally examined glycosylation in the 
large GH families involved in lignocellulosic biomass 
degradation. Complete genome sequences of several 
glycosyl hyrodrases producing filamentous fungi will 
lay an important foundation to globally study the 
glycosylation of glycosyl hydrolases and its effects on 
lignocellulosic degradation. 

Gene transfer technologies for improvement of 
glycosyl hydrolase production in both homologous & 
heterologous organisms
Genetic engineering technology has been drastically 
improved for both microbial systems and higher plants, 
especially with the development of Agrobacterium-
mediated transformation of higher plants 30 years 
ago [348]. This method has been widely applied to 
functional genomics in higher plants for large-scale 
targeted and random mutagenesis to provide one of 
the most effective strategies to understanding gene 
functions and improve productivity and quality of 
various lignocellulosic biomasses [349–354]. Later, this 
method was adapted to fungal transformations and 
as a tool for functional genomics in fungi [355,356]. 
Concurrently, other transformation methods have 
been developed and adapted to both plant and fungal 
transformations, such as chemical-mediated protoplast 
transformation [357] and biolistic nuclear transforma-
tion [358,359]. These effective gene transfer systems 
allow us to examine the potential for improvement 
of glycosyl hydrolase production in both homologous 
and heterologous systems. 

Research on homologous systems is needed to opti-
mize glycosyl hydrolase production in known produc-
tion hosts, where the endogenous glycosyl hydrolases 
have been identified and characterized. Traditionally, 
various mutagenesis methods, such as chemical or 

physical (UV light or x-ray) induction [360–363], have 
been applied, but with advances in gene transfer tech-ith advances in gene transfer tech-
nology, the potential regulation of glycosyl hydrolase 
production can be determined by gene deletion or 
over-expression. For example, deletion of the glucose 
repressor gene Cre1 from T. reesei improved cellulase 
production [364,365] and similar responses have been 
observed for deletion of the ACE1 gene, which also 
affects xylanase expression in T. reesei [366]. Besides the 
negative regulation of transcriptional factors ACEI and 
CREI, expression of cellulases and xylanases was also 
positively regulated by transcriptional factors XYR1, 
ACE2 and HAP2/3/5. Recent completion of the 
genome sequences of several filamentous fungal species 
including two glycosyl hydrolase-producing strains 
of T. reesei [306] and A. niger [308], and broad studies 
of glycosyl hydrolase production in those hosts can 
enhance strain improvements for glycosyl hydrolases 
production by genetic engineering. 

In heterologous systems, over-expression of glycosyl 
hydrolases has been evaluated in different fermenta-
tive microbes such as bacteria, yeast and filamentous 
fungi [367–369], and in higher plants with or without 
tissue-specific targeting [370–372]. Several recent pub-
lications have reviewed detailed strategies for heter-
ologous expression of glycosyl hydrolases in higher 
plants [373,374]. The ultimate goal is to realize economic 
production of glycosyl hydrolases. 

Future perspective 
For lignocellulosics, cellulase adsorption and efficacy 
cannot be simply related to a few substrate features. 
Thus, hemicellulose and lignin removal, deacety-
lation, decrystallization, accessible surface area and 
the nature of different cellulase components could all 
affect access of enzymes to substrate and their effec-
tiveness once they attach. Yet, some of these factors are 
likely more influential than others, and a concerted 
effort is needed to understand fundamental physical 
and chemical features of lignocellulosic biomass that 
impede glycosyl hydrolase access to carbohydrates 
and slow the rate of biomass deconstruction into 
fermentable sugars. Understanding factors that con-
trol interactions between lignocellulosic biomass and 
glycosyl hydrolases as well as inhibitory compounds 
that are either natural biomass compounds released 
during deconstruction or formed by degradation of 
sugars and other biomass constituents in up-stream 
processing would be invaluable in identifying better 
pretreatments and enzyme systems to lower the cost 
of biomass conversion to meet industrial needs. For 
example, understanding how pretreated cellulosic bio-
mass reactivity changes with conversion and structure 
and the effects of enzyme–substrate interactions on 
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sugar release could suggest advanced technologies with 
lower costs. Improved analytical methods are needed 
to better characterize biomass composition and struc-
ture and interactions between biomass, enzymes and 
other compounds, and to follow the details of biomass 
deconstruction. Results from such research can guide 
further optimization of glycosyl hydrolases production 

in both homologous and heterologous systems. Further 
advanced biotechnologies are crucial for discovery and 
characterization of new enzymes and improvement of 
the enzyme characteristics and production in homolo-
gous or heterologous systems and ultimately lead to 
low-cost conversion of lignocellulosic biomasses into 
fuels and chemicals.

Executive summary

 � Advancements in pretreatment and cellulase technologies have contributed significantly to historical cost reductions for biological 
conversion of cellulosic biomass to ethanol and other products.

 � A key to lower cellulosic ethanol cost is to reduce enzyme usage and costs.
 � Emerging biotechnology tools offer great promise in discovery of new enzyme sources with desirable features.
 � Improving the understanding of the structure and function of both lignocellulosic materials and their degrading enzymes will be 

invaluable in determining the roles of biomass pretreatment, hydrolysis and enzymes in influencing cellulose conversion and in targeting 
appropriate strategies to enhance rates and yields.

Substrate-related factors that affect enzymatic hydrolysis of cellulosics
 � Characteristics of cellulose:

 ū Advanced imaging techniques provide new insights into plant cell wall structure and changes during hydrolysis, as well as new 
understanding of enzyme–substrate and enzyme–enzyme interactions;

 ū Cellulose characteristics (e.g., size, structure, crystallinity, degree of polymerization and accessible surface area) were shown to affect 
cellulase adsorption, synergism and processivity;

 ū The mechanism of the rapid decline in hydrolysis rate with cellulose conversion during enzymatic hydrolysis remains unclear, and 
innovative research is needed to shed new light on what slows cellulase action.

Derived insoluble matter distribution effects
 � Deacetylation was reported to improve cellulose digestibility.
 � Hemicellulose (e.g., xylan) and lignin removal appeared to improve cellulose digestibility, but some pretreatment methods are effective 

without removing either (e.g., ammonia fiber expansion).
 � Lignin modification rather than complete removal by thermal pretreatment could result in highly accessible cellulose while the remaining 

solid lignin could cause nonspecific binding of cellulases.
 � Hemicellulose removal is favorable in regards to reducing inhibitory effects of hemicellulose sugars (e.g., xylan mono/oligomers) 

on cellulases.
Derived soluble matter distribution effects

 � The inhibitory effects of soluble compounds released in thermochemical pretreatments are not well understood.
 � Some xylan and lignin derivatives, especially xylan oligomers, were reported to show different degrees of inhibition of enzymatic 

hydrolysis of cellulose.
 � Identification of soluble compounds derived from thermal pretreatment that account for the greatest inhibition effects and strategies to 

reduce or eliminate their deleterious effects needs further investigation.
Enzyme-related factors that affect enzymatic hydrolysis of cellulosics

 � Features of glycosyl hydrolases from different microbes:
 ū Lignocellulosic biomass is naturally deconstructed by glycosyl hydrolase mixtures from various microbes in specific communities.
 ū Glycosyl hydrolases from different microbes have different functional features that potentially can become new sources of 

effective enzymes. 
Enzyme synergy effects on overall degradation process

 � Many forms of enzyme synergism have been observed among cellulases.
 � Enzyme synergism depends on enzyme sources and substrate features.
 � Producing purified enzymes in heterologous systems and establishing standard substrates would improve the understanding of 

enzyme synergism.
 � Study of synergetic microbial communities may lead to potential breakthroughs in lignocellulosic biomass conversion.

Advanced technologies for discovery, characterization, & over-expression of glycosyl hydrolases
 � DNA sequence technology for whole genome sequencing of biomass feedstocks, biocatalystic microbes, metagenomics, and functional 

genomics and metagenomics, can build a foundation for advances in biomass production, enzyme categorization and applications.
 � Mass spectrometry technology has been applied to examine secretomes and subcellular organelle proteomics of biocatalystic microbes 

and protein glycosylation. 
 � Gene transfer technologies improve glycosyl hydrolase production in both homologous and heterologous organisms. 
 � Cellulase engineering through directed evolution, rational design, post-translational modifications, and their combination may greatly 

increase cellulase performance and dramatically decrease enzyme use.
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