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Abstract

Background: In a biorefinery producing cellulosic biofuels, biomass pretreatment will significantly influence the
efficacy of enzymatic hydrolysis and microbial fermentation. Comparison of different biomass pretreatment
techniques by studying the impact of pretreatment on downstream operations at industrially relevant conditions
and performing comprehensive mass balances will help focus attention on necessary process improvements, and
thereby help reduce the cost of biofuel production.

Results: An on-going collaboration between the three US Department of Energy (DOE) funded bioenergy research
centers (Great Lakes Bioenergy Research Center (GLBRC), Joint BioEnergy Institute (JBEI) and BioEnergy Science
Center (BESQ)) has given us a unique opportunity to compare the performance of three pretreatment processes,
notably dilute acid (DA), ionic liquid (IL) and ammonia fiber expansion (AFEX™, using the same source of corn
stover. Separate hydrolysis and fermentation (SHF) was carried out using various combinations of commercially
available enzymes and engineered yeast (Saccharomyces cerevisiae 424A) strain. The optimal commercial enzyme
combination (Ctec2: Htec2: Multifect Pectinase, percentage total protein loading basis) was evaluated for each
pretreatment with a microplate-based assay using milled pretreated solids at 0.2% glucan loading and 15 mg total
protein loading/g of glucan. The best enzyme combinations were 67:33.0 for DA, 39:33:28 for IL and 67:17:17 for
AFEX. The amounts of sugar (kg) (glucose: xylose: total gluco- and xylo-oligomers) per 100 kg of untreated corn
stover produced after 72 hours of 6% glucan loading enzymatic hydrolysis were: DA (25:2:2), IL (31:15:2) and AFEX
(26:13:7). Additionally, the amounts of ethanol (kg) produced per 100 kg of untreated corn stover and the respective
ethanol metabolic yield (%) achieved with exogenous nutrient supplemented fermentations were: DA (14.0, 92.0%),
IL (21.2, 93.0%) and AFEX (20.5, 95.0%), respectively. The reason for lower ethanol yield for DA is because most of
the xylose produced during the pretreatment was removed and not converted to ethanol during fermentation.

Conclusions: Compositional analysis of the pretreated biomass solids showed no significant change in composition
for AFEX treated corn stover, while about 85% of hemicellulose was solubilized after DA pretreatment, and about
90% of lignin was removed after IL pretreatment. As expected, the optimal commercial enzyme combination was
different for the solids prepared by different pretreatment technologies. Due to loss of nutrients during the
pretreatment and washing steps, DA and IL pretreated hydrolysates required exogenous nutrient supplementation
to ferment glucose and xylose efficiently, while AFEX pretreated hydrolysate did not require nutrient supplementation.
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Background

Crude oil is the primary feedstock source for producing
transportation fuels, industrial chemicals and polymers.
Rising crude oil prices, political/social tensions in major
oil-producing nations, and greenhouse gas emissions driv-
ing climate change have triggered worldwide research to-
wards the development of alternative, sustainable sources
of energy [1]. Lignocellulosic biofuels are recognized as a
potential alternative to fossil fuels. Considerable research
has been conducted in recent years to develop efficient
technologies to convert plant-derived polysaccharides to
ethanol [2]. Unlike corn grain-based ethanol, where the
starch can be readily hydrolyzed to fermentable sugars
using enzymes, the production of lignocellulosic ethanol is
limited by biomass recalcitrance. Biomass recalcitrance is
thought to arise largely due to the complex intertwined
network of cellulose, hemicellulose and lignin that re-
stricts enzyme accessibility [3,4]. Numerous pretreatment
processes have been developed to overcome biomass re-
calcitrance, such as: steam explosion, hot water, dilute acid
(DA), lime, phosphoric acid, ammonia (for example,
ammonia fiber expansion (AFEX™), soaking in aqueous
ammonia (SAA) and ammonia recycled percolation (ARP))
and ionic liquid (IL)-based pretreatments [5,6]. However,
most pretreatments pose various challenges in terms of
costs incurred by use of excess water, expensive chemicals
and chemical recovery, feedstock handling, energy require-
ments and downstream processing [7].

DA, IL and AFEX pretreatments are part of the core
research programs studied at the three US Department of
Energy (DOE) funded bioenergy research centers, namely:
Great Lakes Bioenergy Research Center (GLBRC), Joint
Bioenergy Institute (JBEI) and the BioEnergy Science
Center (BESC). DA (acidic) and IL (acidic or alkaline)
are dry to wet product pretreatment processes, whereas
AFEX (alkaline) is a dry biomass to dry product process.
Considerable research has been done to streamline these
processes in order to make them cost effective. Though
these pretreatments still face various challenges, they can
efficiently pretreat lignocellulosic biomass to aid higher
sugar release during enzyme hydrolysis.

In our previous research, developed under the Consor-
tium for Applied Fundamentals and Innovation (CAFI) I,
IT and III programs [8,9], we compared the performance
of several pretreatment technologies. In these studies, the
performance of AFEX and DA pretreatments was com-
pared for different types of feedstock (corn stover (CS),
poplar and switchgrass) [6,9,10]. However, IL pretreat-
ment was not a part of such comparative studies. In this
work, we take into consideration the fact that, after being
exposed to different pretreatment methods, the resulting
biomass materials do not necessarily have the same en-
zyme requirements (for example, greater hemicellulase
requirement for AFEX versus DA treated corn stover) to
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achieve maximum vyields. Similarly, enzymatic hydroly-
sates derived from the various pretreatment methods
have different nutrient requirements to maximize ethanol
yields. Thus, by studying downstream processing condi-
tions that maximize product yields, we can better compare
the potential of each pretreatment method on a level play-
ing field (for example, enzyme loading, glucan loading,
residence time, and so on). We carried out separate hy-
drolysis and fermentation (SHF) and compared the per-
formance of corn stover solids prepared by DA, IL and
AFEX pretreatments. To achieve this, we first optimized
the commercial enzyme cocktails for each pretreated bio-
mass prior to subsequent high-solids loading saccharifica-
tion and fermentation. The fermentability of pretreated
corn stover hydrolysates was evaluated using a recombin-
ant yeast strain of Saccharomyces cerevisiae 424-A (LNH-
ST) (with and without external nutrient supplementation)
[11]. Material balances around pretreatment, hydrolysis
and fermentation were developed to determine the fates
of key biomass components (cellulose, hemicellulose and
lignin) and highlight the differences in sugar and ethanol
yields for the three pretreatment methodologies at indus-
trially relevant saccharification/fermentation conditions.

Results and discussion

Composition of AFEX, DA and IL pretreated biomass
Conditions and parameters for DA, IL and AFEX pre-
treatments are summarized in Table 1. As expected, all
three pretreatments exhibit distinct chemistries, as dem-
onstrated by differences in cell wall composition among
pretreated materials (see Table 2). For example, the alkaline
AFEX process cleaves most of the ester linkages present in
the plant cell wall [12], as confirmed by the absence of
acetyl content in the AFEX pretreated corn stover (Table 2).
Almost all the acetyl groups are converted to acetic acids
and acetamide due to the corresponding hydrolysis or
ammonolysis reactions during AFEX pretreatment. In this
process, lignin and hemicellulose are partially solubilized
and relocated to the biomass surface during pretreatment,
leaving behind a highly porous cell wall that helps to im-
prove enzyme access to the embedded cellulose and hemi-
cellulose [13]. AFEX pretreatment is a dry to dry process
(material enters the process dry and also leaves the process
in the dry state) during which minimal carbohydrate deg-
radation takes place [12] and negligible modifications in
total polysaccharide composition are seen compared to un-
treated biomass (see Table 2). The reduced acid insoluble
or Klason lignin (approximately 30%) levels observed after
AFEX pretreatment may result from currently unknown
chemical modifications at the lignin level that improve lig-
nin solubility during sample preparation (that is, extrac-
tion with hot water and ethanol to remove interfering
extractives prior to sulfuric acid hydrolysis) prior to com-
position analysis based on current National Renewable
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Table 1 Pretreatment conditions used to pretreat biomass using different methods

Pretreatment Post-wash
Method Temperature (°C) Residence Catalyst type Catalyst Catalyst Water Post-wash Water
time (minutes) loading (kg)® recyclable? loading (kg)® water use (kg)° temperature (°C)

DA 160 20 Sulfuric acid 45 No 895.5 1,000 Room
temperature

IL 140 180 IL [C2mim][OAC] 900 Yes N/R 10,000 Room
temperature

AFEX 140 15 Anhydrous 100 Yes 60 N/R -

ammonia

2Catalyst loading: kg/100 kg dry biomass; Pwater use: L/100 kg dry biomass. AFEX, ammonia fiber expansion; [C2mim][OAc], 1-ethyl-3-methylimidazolium acetate;

DA, dilute acid; IL, ionic liquid; N/R, not required.

Energy Laboratory (NREL) laboratory analytical procedure
(LAD).

On the other hand, DA pretreatment cleaves not only
ester linkages, but also some ether linkages present in
lignin. Use of dilute sulfuric acid favors the chemical con-
version of xylan to xylose, which can be further dehydrated
to furfural under certain conditions [14]. These hydrolyzed
sugars and their respective decomposition products are
soluble in the acidic pretreatment liquor, which are hence
separated from the solids after pretreatment. Subsequent
washing steps (mostly to remove residual acid) aid in
further removal of these soluble components from the
pretreated residual solids. Therefore, these solids have a
reduced xylan content compared to untreated corn sto-
ver. As a result, the percentage of glucan and lignin in
the pretreated solids increased by 26% and 5%, respect-
ively. The acetyl content decreased from 2.1% to 0.6%,
possibly due to incomplete hydrolysis of ester linkages
under these pretreatment conditions.

Table 2 Compositional analysis (% wt/wt, dry weight basis)
for untreated, AFEX, DA and IL treated MSU corn stover

Composition Untreated AFEX DA IL
Glucan 334+32 33505 591+30 469+19
Xylan 249+20 248+09 6.5+0.1 298+ 0.5
Arabinan 3.7+£05 33+04 36+0.1 03+00
Acetyl 21£02 00£00 06£06 15+0.1
Acid insoluble lignin® 172+06 122+£02 22202 2705
Ash 36+00 44+03 25+00 13+0.26
Extractives 104+04  248+08 154+08 13.1+£20

All experiments were carried out in triplicates with averages and standard
deviations reported here.

*The acid insoluble or Klason lignin analysis method was modified to use
47 mm, 0.22 um pore size mixed cellulose ester filter disks (Millipore
Corporation, Bedford, MA, USA) during the filtration process instead of the
fritted crucibles. The filtered lignin residues were dried overnight in a
desiccator prior to weighing. AFEX does not remove any particular
components during pretreatment. Ammonia is evaporated and all the
ammonia soluble biomass components condense on the surface of the
biomass [13]. However, some reactions do occur to lignin during AFEX,
transforming Klason lignin (acid insoluble) to acid soluble lignin, which was
not quantified in this study. AFEX, ammonia fiber expansion; DA, dilute acid;
IL, ionic liquid; MSU, Michigan State University.

ILs, such as 1-ethyl-3-methylimidazolium acetate ([C2
mim][OAc]), can solubilize plant cell wall components,
which can then be selectively precipitated from solution
by adding an anti-solvent (for example, water and etha-
nol), leaving most of the lignin behind in solution, as
carried out in this study. The composition of the solids
after precipitation and washing (Table 2) clearly shows
an enriched fraction of glucan (46.9%) and xylan (29.8%),
with only 2.7% lignin content. The residual acetyl content
of IL treated corn stover is higher than that of DA and
AFEX treated corn stover. This suggests that IL pretreat-
ment may not effectively cleave acetyl residues. Since
acetyl ester residues remain intact after IL treatment, it is
likely that most of the ferulate ester crosslinks that are re-
sponsible for the lignin-carbohydrate complexes (LCCs)
are intact after IL pretreatment. Previous work has sug-
gested that [Comim][OAc]-based pretreatment deacety-
lated the xylan backbone, while simultaneously acetylating
the lignin from Eucalyptus globulus, and partially cleaving
the B-ether linkages from lignin [15]. Based on this ob-
servation, it may be that the acetyl content of the IL
pretreated solids might have derived from the residual
acetylated lignin. Detailed work is required to further
characterize the acetylated components of IL pretreated
cell walls and the role of [C2mim][OAc] in acetylation
reactions during IL pretreatment of corn stover.

Enzyme optimization
Commercial enzyme cocktail mixtures were optimized for
DA, IL and AFEX treated corn stover to maximize sacchar-
ification yields for each pretreated substrate. It is reasonable
to assume that corn stover subjected to different pretreat-
ment methodologies will require a unique cocktail of en-
zymes to achieve optimum conversion. For example, DA
pretreatment removes most of the xylan from corn stover
and should therefore require lower xylanase activity when
compared to AFEX and IL treated corn stover. To account
for these differences in cell wall composition, enzyme cock-
tails were optimized for each pretreated substrate.

The design of experiments was carried out using Minitab®
software (Coventry, UK), utilizing 31 unique enzyme com-
binations, composed of various ratios of three commercial
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enzymes: CTec2 (cellulase)) HTec2 (hemicellulase) and
Multifect Pectinase (accessory) (Figure 1). The enzymatic
hydrolysis was performed in a 96-well microplate at
0.2 wt% glucan loading and total enzyme protein loading of
15 mg/g glucan with the relative protein ratios varying from
0 to 100% of the total added protein. The performance
of different enzyme combinations with respect to glucan
and xylan conversions for each pretreatment is shown
in Figure 2. The results demonstrate that for maximum
polysaccharide conversion, DA-CS requires 67% Ctec2
and 33% Htec2 enzymes, IL-CS requires all three enzymes
in similar proportions, whereas AFEX-CS requires 66.7%
Ctec2, 16.7% Htec2 and 16.7% Multifect Pectinase.

It is not surprising that DA-CS requires no additional
accessory enzymes and only requires 33% hemicellulase
(Htec2) due to the lower levels of xylan (6.5%) and arabinan
(3.6%). Similarly, 67% cellulase (Ctec2) in the optimized
cocktail for DA-CS correlates with the higher glucan con-
tent, which represents approximately 85% of the total car-
bohydrates in the DA pretreated solids.

On the other hand, AFEX and IL pretreated corn sto-
ver contains more hemicelluloses, and thus required
16.7% and 33%, respectively, of each accessory enzyme.
Even though the ratio of glucan to xylan is higher in IL-
CS as compared to AFEX-CS, it requires a lower ratio of
cellulase to hemicellulase. This observation correlates with
the fact that AFEX-CS has higher lignin content (approxi-
mately 4.5 fold) than IL-CS. Lignin content in biomass is
known to inhibit cellulases more readily than hemicellu-
lases [16]. Moreover, IL-CS is known to decrystallize cellu-
lose and partially convert native crystalline cellulose I to
highly amorphous cellulose II [17]. Decrystallized cellulose
is more amenable to enzymatic hydrolysis than the native
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cellulose, thereby requiring relatively less cellulase in the
enzyme mixture. Thus, from our results, optimal enzyme
mixtures correlate well with the content of cellulose,
hemicellulose and lignin, as well as the crystalline state of
cellulose. Other factors influencing these results may in-
clude the relative influence of non-native decomposition
products formed during pretreatment on enzyme activity
[18,19].

Enzymatic conversion of biomass to sugars at high
solid loading
The pretreated substrates were enzymatically hydrolyzed
at high solid loading (6% glucan loading) in a fermenter,
using the respective optimized enzyme mixtures, operating
at 50°C with pH controlled at 4.8. As mentioned previ-
ously, these optimized enzyme mixtures were determined
by 0.2% glucan loading enzymatic hydrolysis, performed in
a high-throughput microplate format. It is possible that the
optimum enzyme mixtures may vary with increased solid
loadings and saccharification conditions, since some of
these enzymes may be more susceptible to shear stress and
substrate/end product inhibition [20]. These factors may
promote deactivation/inhibition of enzymes and thereby
change the relative ratios of enzymes for an optimum mix-
ture. Thus, the extrapolation of optimum enzyme mixtures
to higher solid loadings represents a limitation of this
study. However, this factor should not significantly impact
the final conclusions of this paper and is a previously ac-
knowledged limitation in peer-reviewed literature [21].
Throughout the course of high solid loading hydrolysis of
the pretreated substrates, liquid samples were taken every
24 hours to estimate monomeric sugar concentrations.
Time course data for the monomeric sugar concentrations
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Figure 1 Three commercial enzyme combinations (based on total protein loading) used for optimizing enzyme cocktail for DA, IL and
AFEX biomass. AFEX, ammonia fiber expansion; DA, dilute acid; IL, ionic liquid.
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are given in Figure 3. The first 24 hours were critical for en-
zymatic hydrolysis, since over 50 g/L of glucose was
achieved for all three pretreated substrates (Figure 3A). On
the other hand, only 4 to 6 g/L of additional glucose was
produced in the following 48 hours. Moreover, the decrease
in the rate of enzymatic hydrolysis observed between 24 to
72 hours is not significantly different between the three pre-
treatments/substrates, and is approximately 4% to 5% of
the rates of enzymatic hydrolysis achieved in the first
24 hours.

During high solid loading enzymatic hydrolysis, the li-
quid volume does not represent the total reaction volume.
As the solids concentration increases (from 1% glucan
loading to 6% as used in this study), the assumption that
the solution volume is all liquid is increasingly incorrect

as a larger fraction of the volume is occupied by solids.
Therefore, it is not possible to calculate conversion at high
solid loading without performing solid—liquid separations,
measuring liquid volume and concentration of sugars
in the liquid fraction. For this reason a thorough mass
balance was performed on the hydrolysis products as
described previously by Garlock et al. [6] to determine
the final glucan and xylan conversion to mono- and
oligosaccharides.

IL-CS gave higher glucan conversion after 24 hours,
yielding 66 g/L of glucose and therefore achieving the
highest final concentration of glucose of all three sub-
strates after 72 hours (72 g/L, 100% glucan conversion).
DA-CS produced 59 g/L of glucose in the first 24 hours
and reached a maximum of 65 g/L after 72 hours (88%
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glucan conversion). Similarly, AFEX produced 56 g/L of
glucose in 24 hours; however, since the rate of glucose
release is slightly lower than that of DA-CS during the
remaining 48 hours, the final concentration of glucose
peaked at 60 g/L (79% glucan conversion).

These differences in glucose release rate and final glu-
cose concentrations are a consequence of the various
physicochemical properties of the differently pretreated
substrates. For example, lignin content is low in IL-CS.
Lignin is widely known to affect enzymatic hydrolysis by
inhibiting cellulases and hemicellulases [16,22-25]. More-
over, IL pretreatment modifies cellulose structure by con-
verting native cellulose I to cellulose II with a significantly
reduced crystallinity index (CrI) [17,26-28]. Cellulose II
prepared by mercerization with 25% NaOH had enhanced
the performance of cellulases by 1.6 fold when compared
to native cellulose Iz [29]. However, it is likely that the
amorphous cellulose that is also produced during forma-
tion of cellulose II is the primary cause for improvement
in net hydrolysis rate. The other pretreatments in this
study do not modify the native crystal structure of cellu-
lose present in corn stover. DA pretreatment is known to
increase cellulose Crl due to a selective decomposition
of the amorphous portions of cellulose, which are more
susceptible to acid degradation as suggested by Kumar
et al. [27,30]. With respect to AFEX pretreatment, earlier
reports did not observe any major effect on cellulose Crl
under current AFEX conditions [26]. Even though previ-
ous observations suggest a decrease of cellulose digestibil-
ity with increasing CrI of cellulose (on pure substrate), it is
not possible to address differences in enzymatic hydrolysis
performance based on Crl measurements with these sub-
strates. This is because the pretreated biomass materials
are composed of different fractions of amorphous-like
materials that impact not only enzymatic digestibility
(for example, lignin and hemicellulose) but also affect
the accuracy of Crl estimation using X-ray diffraction.

High concentrations of xylo-oligomers inhibit cellu-
lases and could also contribute to the lower glucan con-
version seen for AFEX-CS compared to DA-CS [30,31].
This hypothesis is supported by the accumulation of

xylo-oligomers during enzymatic hydrolysis of AFEX-CS,
which reaches 19 g/L after 72 hours of incubation.

In Figure 3B, xylose concentrations of hydrolysates are
presented as a function of enzymatic hydrolysis time for
the various pretreated feedstocks. Since DA-CS contains
only 6.5% of xylan, lower xylose concentrations (4 g/L)
can be expected in the hydrolysate. This xylose concen-
tration corresponds to 48% xylan conversion, which is
relatively low when compared to the other pretreated
substrates (79% for IL-CS and 52% for AFEX-CS). It is
possible that the xylan present in DA-CS is more recalci-
trant to enzymatic hydrolysis since it could not be hy-
drolyzed to soluble oligomeric and monomeric xylose
during acid pretreatment.

Similar to glucan hydrolysis, most of the hydrolyzed
xylan was released in the first 24 hours in pretreated
corn stover with all three pretreatment processes. IL-CS
produced the highest concentration of xylose among all
pretreated feedstocks (35 g/L) after 72 hours, which rep-
resents 79% of the total xylan conversion. The low lignin
composition of IL-CS could be an important factor con-
tributing to high xylan conversion and reduced enzyme
inhibition during enzymatic hydrolysis [16]. AFEX-CS
released 29 g/L of xylose in 72 hours of enzymatic hydroly-
sis, representing about 52% xylan conversion. However,
78% of AFEX-CS xylan was solubilized to monomeric and
oligomeric sugars. The xylo-oligomers content is much
higher in AFEX (33%) than IL (11%) and DA (23%) hydro-
lysates. The total xylan conversions for IL and DA (that
is, xylose and xylo-oligomers) reached 88% and 62%, re-
spectively, after 72 hours. Although the yeast used in
this study is able to ferment only xylose to ethanol, it is
not capable of utilizing xylo-oligomers, in common with
most industrial ethanologens. Therefore, ethanol yields
will depend on the conversion of xylan to monomeric
xylose and not the total xylan conversion, that is, xylose
and xylo-oligomers.

Ethanol fermentation
Fermentation experiments were performed using the re-
combinant xylose-fermenting yeast strain S. cerevisiae
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424A (LNH-ST), kindly provided by Professor Nancy Ho
of Purdue University (West Lafayette, IN, USA) [32].
Fermentation product profiles for IL, AFEX and DA corn
stover hydrolysates are shown in Figure 4, where glucose,
xylose, ethanol and cell density (ODggy) were monitored
during 120 hours of fermentation. Since the three pre-
treatment methodologies considered in this work exhibit
distinct mechanisms of action, the relative chemical com-
position of the resulting hydrolysates varies significantly
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[12,26,30]. In this context, since nutrient availability is one
of the major factors that influences fermentation perform-
ance, we compared the fermentability of these hydroly-
sates both in the absence (Figure 4A) and in the presence
(Figure 4B) of adequate external nutrient supplementation
(yeast extract peptone and urea) required for an efficient
microbial sugar metabolism [33]. The hydrolysates contain
different initial concentrations of glucose and xylose,
which will result in different concentrations of ethanol.
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Figure 4 Fermentation product and cell growth profiles for three different pretreated corn stover hydrolysates. (1) DA, (Il) IL and (ll) AFEX.
(A) Without external nutrients and (B) with external nutrient supplementation. AFEX, ammonia fiber expansion; DA, dilute acid; IL, ionic liquid.
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Since final ethanol concentration is not an adequate metric
by itself for comparing fermentation performances in this
study, the data are analyzed and discussed with respect to
ethanol metabolic yield, fermentation rates and percentage
sugar consumption. Ethanol metabolic yield was calculated
from consumed glucose and xylose during fermentation,
based on the theoretical ethanol yield (0.51 g ethanol per
g glucose/xylose).

In the absence of nutrient supplementation, glucose
metabolism was fastest for AFEX-CS hydrolysate, with a
maximum rate of 5.72 g.L’l.h’1 (Table 3). In agreement
with previous reports, xylose fermentation occurred only
after glucose was totally consumed by S. cerevisiae 424A
(LNH-ST). Diauxic lag is typical of this microbial strain,
which can be observed in nutrient-rich environments such
as synthetic media composed of Yeast Extract Peptone
(YEP), glucose and xylose [32]. The AFEX-CS hydrolysate
also provided the highest xylose consumption rate (0.47 g.
L Lh™) without additional nutrients. However, even in
these optimal conditions, S. cerevisiae 424A (LNH-ST)
was unable to completely consume xylose in all the hydro-
lysates within the first 120 hours of fermentation. DA-CS
hydrolysate showed the highest percentage xylose con-
sumption among the three substrates (91%), which relates
to low initial concentration of xylose (4 g/L) in DA-CS
hydrolysate, whereas AFEX-CS and IL-CS hydrolysates
contained 29 g/L and 35 g/L of xylose, respectively.

The superior fermentation performance of the AFEX
hydrolysate without nutrient supplementation when com-
pared to IL-CS and DA-CS hydrolysates is likely due to
the fact that the AFEX process requires no washing steps
thereby preserving essential biomass nutrients for fermen-
tation. Additionally, unlike IL and DA, AFEX pretreat-
ment does not produce a highly inhibitory pretreatment
mixture [12], thus avoiding the detoxification and exten-
sive washing steps that remove nutrients from the biomass
[34,35]. This hypothesis is supported by the lower cell
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growth rates observed in both IL-CS and DA-CS hydroly-
sates, when compared to AFEX-CS hydrolysate (Figure 4A),
suggesting that both IL-CS and DA-CS hydrolysates
were nutrient-limited for yeast cell growth. The superior
fermentability of AFEX-CS hydrolysates in the absence
of nutrient supplementation was also reflected by a
higher metabolic yield of 98%, compared to 93% and
90% for DA-CS and IL-CS hydrolysates, respectively
(Table 3).

When the hydrolysates were supplemented with nutri-
ents, an increase in cell growth (Figure 4B) and sugar
consumption rate were observed for all three hydroly-
sates. The highest final cell density (18.5 at ODgg) was
observed for the IL-CS hydrolysate as it contains a
higher concentration of fermentable sugars (glucose and
xylose) compared to the other two pretreated corn stover
hydrolysates. This observation also supports the earlier
hypothesis that IL-CS and DA-CS hydrolysates were
nutrient-limited for S. cerevisiae 424A (LNH-ST) fermen-
tation (Figure 4A). Nutrient supplementation helped the
yeast to ferment most glucose in 8 hours and xylose in
48 hours (Figure 4B and Table 3). From these observations
we conclude that xylose fermentation performance by S.
cerevisiae 424A (LNH-ST) depends on nutrient availability
in the media, as previously observed by Lau et al [34].
Comparing the xylose fermentation rates between the hy-
drolysates, IL-CS hydrolysate leads with the highest rate
(1.18 g.L’l.h’l), followed by AFEX-CS (0.87 g.L’l.h’l) and
DA-CS hydrolysates (0.16 g.L”"h™"). The lower xylose
consumption rate observed in DA-CS hydrolysate can be
attributed to its low xylose concentration (4 g/L), while
the superior xylose fermentation performance of IL-CS
hydrolysate demonstrates that it benefited the most
from nutrient supplementation since only 70% of the xy-
lose was fermented at a maximum rate of 0.24 gL "h™
when no nutrients were supplemented. This hypothesis is
further supported by the marginal increase in metabolic

Table 3 Ethanol fermentation performances of different pretreated biomass hydrolysates

Ethanol fermentation Parameter DA IL AFEX
Without nutrient supplementation Metabolic yield (%) 93 90 98
Glucose consumption (%) 100 100 99
Xylose consumption (%) 91 70 84
Maximum glucose consumption rate (g.L™"h™") 495 536 572
Maximum xylose consumption rate (g.L™".h™") 0.07 024 047
With nutrient supplementation Metabolic yield (%) 90 93 97
Glucose consumption (%) 100 100 99
Xylose consumption (%) 100 97 94
Maximum glucose consumption rate (gL' .h™") 8.09 8.80 7.30
Maximum xylose consumption rate (g.L™".h™") 0.16 118 087

Metabolic yield calculated based on the theoretical ethanol yield from consumed glucose and xylose, 0.51 g ethanol/g sugar. AFEX, ammonia fiber expansion; DA,

dilute acid; IL, ionic liquid.
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yield from 90% to 93% after supplementing the IL-CS hy-
drolysate with nutrients, while the opposite trend was ob-
served for the other two hydrolysates. The medium that
benefited the least from nutrient supplementation was
DA-CS hydrolysate, since the metabolic yield decreased
by 3% (Table 3) and the final ethanol concentration did
not vary significantly. This result was predictable consider-
ing that nutrient supplementation tends to benefit xylose
fermentation to a greater extent than glucose fermentation
and DA-CS hydrolysate contains low levels of xylose.

Process mass balances

The results obtained from pretreatment, enzymatic hy-
drolysis and fermentation were used to develop a process
mass balance for each pretreatment technology (Figure 5).
AFEX pretreatment utilized 100 kg of ammonia and 60 kg
of water per 100 kg of dry untreated corn stover, generat-
ing a solid stream (pretreated corn stover) and a gaseous
stream (mostly composed of ammonia and water vapor).
The ammonia released after AFEX pretreatment can be
recycled and reused in an industrial system; however, the
mass balance for ammonia was not performed in this
study. From previous studies, it is known that about 3 kg
of ammonia left behind per 100 kg of dry untreated
corn stover, mostly due to the ammonolysis and hydrolysis
reactions mentioned previously [12,13]. Corn stover was
essentially completely recovered after AFEX pretreatment
and only minor changes were observed in its composition.

DA pretreatment utilized 4.5 kg of sulfuric acid and
895.5 kg of water per 100 kg of corn stover, followed by
washing steps utilizing additional water at room tempera-
ture. In an industrial setup, after the pretreatment process,
sulfuric acid is carried with the liquid stream and neutral-
ized with an alkali (for example, CaO, CaCO3 or NH,OH).
The liquid stream is rich in xylose that can be fermented
to ethanol by xylose-fermenting microbes when properly
conditioned and detoxified [36,37]; however, in this work
this stream was not evaluated for ethanol conversion. The
recovered solid stream represents about 49.3% of the un-
treated corn stover, primarily because of the xylan and
other extractives removal during pretreatment.

In the case of IL pretreatment, 900 kg of [C,mim]
[OAc] was used per 100 kg of corn stover. The residual
IL was removed from the solid biomass after pretreat-
ment with a series of water and ethanol washes. In an
industrial setup, the liquid stream can be processed to
recycle and reuse the IL in subsequent pretreatment steps
[38,39]; however, the mass balance over the recycling
process was not performed in this study. IL pretreatment
was able to remove most of the lignin from corn stover,
generating a solid fraction that is enriched in glucan
(46.9%) and xylan (29.8%). This washed solid fraction rep-
resents 64% of the total inlet biomass and was the stream
subjected to the enzymatic hydrolysis step.
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Enzymatic hydrolysis of the pretreated corn stover was
performed at 6% glucan loading for 72 hours using the
optimal combination of commercial enzyme cocktails
determined by the previously discussed combinatorial
experiments. For AFEX pretreated biomass, 78.6% of the
glucan was converted to monomeric glucose during en-
zymatic hydrolysis, while 52% of the xylan was converted
to monomeric xylose. However, the total soluble sugars
present in the hydrolysate (monomeric and oligomeric)
represent 88.3% and 77.7% of the initial glucan and xy-
lan, respectively. The residual solids stream is composed
of 20.5% (wt/wt) of unhydrolyzed carbohydrates and
26% (wt/wt) of lignin [40,41].

During enzymatic hydrolysis of DA-CS, it was possible
to convert 87.6% and 48% of initial glucan and xylan to
monomeric sugars, respectively. However, the mono-
meric xylose that was converted during enzymatic hy-
drolysis represents only 1.5 kg per 100 kg of the initial
corn stover that was fed into the pretreatment operation.
This is a consequence of the initial xylan solubilization
during DA pretreatment. The total soluble glucan and
xylan produced during enzymatic hydrolysis of DA corn
stover represents 92.2% and 62.3% of the total glucan and
xylan fed into the hydrolysis vessel, respectively. Similar to
the AFEX pretreatment, the solid fraction leaving after
enzymatic hydrolysis represents 23% of the raw biomass
input and can be used to generate electrical power to
supply for biorefinery operations [41].

Enzymatic hydrolysis of IL-CS was able to produce the
highest glucan and xylan conversions to monomeric sugars
among the three processes considered in this study. The
monomeric glucose and xylose conversions during enzym-
atic hydrolysis were 100% and 78.9%, respectively. When
compared to the other pretreated feedstocks, IL corn
stover did not generate a significant amount of gluco-
oligomers during enzymatic hydrolysis. However, we ob-
served 1.7 kg of xylo-oligomers for 100 kg of corn stover
fed. This corresponds to 9.4% of the xylan that was carried
through enzymatic hydrolysis. More importantly, the fer-
mentable sugar recovery (based on the initial corn stover
input) for the IL-based process was the highest among the
three cases considered here. The IL-based process was
able to convert 79% of the initial sugars present in the
untreated corn stover to fermentable sugars, while AFEX-
and DA-based processes converted 67% and 46%, respect-
ively. Potentially, the DA-based process can utilize the
xylose-rich residue derived from pretreatment wash stream
during fermentation. In this scenario, the sugar recovery
for a DA-based process will improve about 30%, yielding
76% of total fermentable sugar recovery. However, the fer-
mentability of this pretreatment stream was not considered
in this work.

The final ethanol yields of the processes evaluated in
this work are a direct consequence of the nature of the
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different pretreatments. The AFEX-based process was
able to produce 20.5 kg of ethanol per 100 kg of bio-
mass, while DA- and IL-based biorefineries were able to
produce 14 kg and 21.2 kg, respectively. The lower etha-
nol value for the DA process is a consequence of the ex-
tensive xylan removal during pretreatment. Although the
AFEX process presented the lowest monomeric glucose
and xylose conversions during enzymatic hydrolysis, it
preserved most of the sugars throughout the ethanol pro-
duction process and capitalized on high ethanol metabolic
yields during fermentation (Table 3). AFEX has another
property that was not explored in this study. Since bio-
mass is left dry following AFEX, it can be fed in very high
concentrations, thereby achieving potentially higher etha-
nol concentrations, in contrast with DA and IL pretreat-
ments. In this study, pretreated DA and IL corn stover
was freeze-dried, thereby enabling the 6% glucan loadings
used here. In the case of the IL process, the high mono-
meric glucose and xylose conversions coupled with the
preservation of carbohydrates up to the fermentation stage
contributed to the highest ethanol yield among the three
processes. The viability of these three processes is strongly
dependent on the ethanol yield. However, it should be
noted that the cost of ethanol production (for example,
US$/gallon of ethanol) is the most important metric to
evaluate the commercial potential of these three processes.
Even though this work does not present full techno-
economic evaluations for the various pretreatments in a
process context, it provides useful insights on different as-
pects of the ethanol production platforms and how they
depend on the choice of pretreatment.

Conclusions

In this work, AFEX, DA and IL pretreatments were eval-
uated from a biorefinery processing perspective, using
industrially relevant conditions for converting corn sto-
ver to ethanol. The physicochemical differences between
the pretreated substrates were acknowledged in this
work by optimizing the commercial enzyme cocktails to
maximize sugar yields for each individual substrate. The
optimum enzyme combinations were correlated to the
composition of the pretreated biomass. IL pretreated
corn stover was the most readily digestible among the
substrates considered in this work given the nature and
composition of the substrate, and it also gave improved
fermentability when supplemented with nutrients. Similar
to IL-CS, DA-CS was amenable to enzymatic hydrolysis
and fermentation when supplemented with adequate nu-
trients. In this work, the soluble sugars generated during
DA pretreatment were not considered for fermentation. If
we consider these soluble sugars, the DA pretreatment
process could potentially recover 76% of the total sugars
present in untreated corn stover. Finally, AFEX pretreat-
ment was able to produce highly digestible substrates,
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conserving most of the carbohydrates during the pretreat-
ment step. AFEX was able to produce high fermentation
metabolic yield (98%) even without external nutrient sup-
plementation. The ethanol yields calculated for DA, IL
and AFEX pretreated residual solids were 14, 21.2 and
20.5 kg of ethanol per 100 kg of corn stover, respectively.

Materials and methods

Biomass

Corn stover harvested in September 2008, was obtained
from Michigan State University (MSU) Farms (East
Lansing, MI, USA). The corn hybrid used was NK 49-E3
(Syngenta, Basel, Switzerland) which is a typical corn
stover hybrid used in the Great Lakes region. We refer
to it as MSU corn stover. The biomass was milled to a
40 mesh size and stored at 4°C until further use.

Enzymes

Cellic® CTec2 (138 mg protein/mL, batch number VCNI
0001), a complex blend of cellulase, B-glucosidase and
hemicellulase, and Cellic’ HTec2 (157 mg protein/mL,
batch number VHNO00001) were generously provided by
Novozymes (Franklinton, NC, USA). Multifect Pectinase®
(72 mg protein/mL, batch number 4861295753) was a gift
from DuPont Industrial Biosciences (Palo Alto, CA, USA).
The protein concentrations of the enzymes were deter-
mined by estimating the protein (and subtracting the non-
protein nitrogen contribution) using the Kjeldahl nitrogen
analysis method (AOAC Method 2001.11, Dairy One
Cooperative Inc., Ithaca, NY, USA).

Biomass pretreatment

DA pretreatment was performed at BESC (University of
California, Riverside, CA, USA) at 160°C for 20 minutes
with 10% w/w solid loading and 0.5% w/w sulfuric acid
using a 1 L Parr reactor with two stacked pitched blade
impellers (Model 4525, Parr Instruments Company, Moline,
IL, USA). It took 2 minutes for the reactor to reach 160°C
and another 2 minutes to bring the biomass temperature
down to ambient conditions after pretreatment completion.
The heating system was a 4 kW model SBL-2D fluidized
sand bath (Techne, Princeton, NJ, USA). After the pretreat-
ment, the residual solids were washed with water to remove
acid and other degradation compounds produced during
the process.

IL pretreatment was performed at JBEI (Berkeley, CA,
USA) using 1-ethyl-3-methylimidazolium acetate, abbre-
viated as [C2mim][OAc], at 140°C for 3 hours using 15%
(wt/wt) loading of biomass to IL in a controlled tem-
perature oil bath using a sealed stirred vessel. It took
30 minutes for the reactor to reach 140°C and 20 minutes
to cool down to 60°C. The residual IL was removed and
pretreated biomass material was recovered with a series of
water and ethanol washes.
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AFEX pretreatment was performed at the GLBRC (Bio-
mass Conversion Research Laboratory, MSU, Lansing, MI,
USA). The conditions were 140°C for 15 minutes at 60%
(wt/wt) moisture with 1:1 anhydrous ammonia to biomass
loading in a bench-top stainless steel batch reactor (Parr
Instruments Company) [33]. It took 30 minutes for the re-
actor to reach 140°C and the ammonia was rapidly re-
leased, which immediately brought the biomass to room
temperature. After the treatment, ammonia was removed
by evaporation, leaving an essentially dry material. Hence
AFEX is a dry to dry process, while IL and DA are dry to
wet processes, as noted above.

Compositional analysis

Extractive-based compositional analyses of the samples
were performed according to the NREL LAPs: Prepar-
ation of Samples for Compositional Analysis (NREL/
TP-510-42620) [42] and Determination of Structural
Carbohydrates and Lignin in Biomass (NREL/TP-510-
42618) [43]. The biomass was extracted with water and
ethanol prior to the acid hydrolysis step. The sugar
concentrations of the extracts were included in the
composition.

Microplate-based saccharification of pretreated biomass
Ternary enzyme mixture optimization assays were per-
formed on AFEX, freeze-dried DA and freeze-dried IL
pretreated corn stover samples at 0.2% glucan loading in
a 96-well microplate as described by Gao et al. [44]. The
assay was carried out at 15 mg protein/g glucan loading
using three commercial enzyme mixtures (CTec2, HTec2
and Multifect Pectinase) at different ratios. The pH was
maintained at 4.8 with 50 mM citrate buffer. The micro-
plates were incubated at 50°C for 24 hours at 250 rpm.
After hydrolysis, monomeric glucose and xylose concen-
trations of the liquid samples were determined colorimet-
rically using enzymatic assay kits, as described previously
by Gao et al. [44].

High solid loading hydrolysis

The washed (when used) solid streams from the three dif-
ferent pretreatments were hydrolyzed at 6% glucan loading
in a fermenter equipped with a pitched blade impeller. The
previously determined optimum enzyme mixtures were
used for hydrolysis of the respective pretreated feedstocks.
Hydrolysis was performed over a period of 3 days with
30 mg protein/g glucan enzyme loading at 50°C and
1,000 rpm. Samples were taken every 24 hours and the
sugar concentrations were measured by HPLC. After 3 days
of hydrolysis, the overall mass balances for the pretreated
solids were determined as described previously by Garlock
et al. [6].
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Fermentation

The sterile filtered hydrolysates resulting from DA, IL and
AFEX treated corn stover at 6% glucan loading were fer-
mented using a recombinant S. cerevisiae 424A (LNH-ST)
strain capable of metabolizing both glucose and xylose to
ethanol. Fermentations were carried out in 125 mL baffled
shake flasks at 50 mL reaction volume. The experiments
were initiated with an initial cell optical density (OD) of 2
measured at 600 nm, with and without nutrient supple-
mentation (yeast extract (5 g/L) and tryptone (10 g/L)).
Samples were taken at 4, 8, 12, 18, 24, 48, 72, 96 and
120 hours and their glucose, xylose and ethanol concen-
trations were determined by HPLC.

Analytical methods

Monomeric sugars were quantified using a Shimadzu
HPLC system equipped with an Aminex HPX-87P carbo-
hydrate analysis column maintained at 60°C (Bio-Rad,
Hercules, CA, USA) and Shimadzu refractive index de-
tector (RID). Degassed HPLC grade water was used as a
mobile phase at 0.6 mL/min. Injection volume was 10 pL
with a run length of 20 minutes. Fermentation samples
were analyzed for ethanol and residual sugars with the
above mentioned HPLC system equipped with an Ami-
nex HPX-87H column maintained at 50°C. Sulfuric acid
(5 mM) was used as an eluent at 0.6 mL/min. Injection
volume and run length was similar to HPX-87P column.

Oligosaccharide analysis

Oligomeric sugar analysis was conducted on the hydrolys-
ate liquid streams using an autoclave-based acid hydrolysis
method at a 2 mL scale. Hydrolysate samples were mixed
with 69.7 uL. of 72% sulfuric acid in 10 mL screw-cap cul-
ture tubes and incubated in a 121°C bench-top hot plate
for 1 hour, cooled on ice and filtered into HPLC vials. The
concentration of oligomeric sugar was determined by
subtracting the monomeric sugar concentration of the
non-hydrolyzed samples from the total sugar concentra-
tion of the acid hydrolyzed samples. Sugar degradation was
accounted for by running the appropriate sugar recovery
standards along with the samples during acid hydrolysis.
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