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Amphiphilic additives such as bovine serum albumin (BSA) and Tween have been used to improve
cellulose hydrolysis by cellulases. However, there has been a lack of clarity to explain their mechanism
of action in enzymatic hydrolysis of pure or low-lignin cellulosic substrates. In this work, a commercial
Trichoderma reesei enzyme preparation and the amphiphilic additives BSA and Tween 20 were applied
for hydrolysis of pure Avicel cellulose. The results showed that these additives only had large effects

on cellulose conversion at low enzyme to substrate ratios when the reaction flasks were shaken.
Furthermore, changes in the air-liquid interfacial area profoundly affected cellulose conversion, but
surfactants reduced or prevented cellulase deactivation at the air-liquid interface. Not shaking the flasks
or adding low amounts of surfactant resulted in near theoretical cellulose conversion at low enzyme
loadings given enough reaction time. At low enzyme loadings, hydrolysis of cellulose in lignocellulosic
biomass with low lignin content suffered from enhanced enzyme deactivation at the air-liquid interface.

Cellulases, such as those secreted extracellularly by the industrial strain of Trichoderma reesei, a soft-rot fun-
gus, find applications in cellulosic ethanol, pulp and paper, textiles, food, and agriculture industries due to their
ability to cleave glycosidic bonds in cellulose at low temperatures at environmentally safe conditions'. However,
these enzymes are relatively expensive, lose their activity over time of reaction, and cannot be recycled efficiently
from the solid-liquid reaction medium? A typical example is that with 5 mg protein per gram cellulose loading
of commercial preparation of DuPont Accellerase® 1500 at 50 °C and at pH 5.0 after 5 days of reaction, only
50% conversion of pure Avicel cellulose (PH-101 grade) to glucose could be realized®. Cellulose conversions at
the low cellulase loadings required for commercial application, however, are even lower for real lignocellulosic
biomass*. Therefore, there is an acute need to improve cellulose conversions at low enzyme loadings to improve
the return on products derived through reactions catalyzed by cellulase. Non-ionic surfactants such as polyeth-
oxylated sorbitan ester type surfactants, commonly known as Tween®® and non-catalytic proteins like bovine
serum albumin (BSA)®” are known to improve cellulose conversions from enzymatic hydrolysis of pretreated
lignocellulosic biomass. Two key studies, one by Eriksson et al.® on surfactants and BSA in 2002 and the other by
Yang and Wyman® on BSA in 2006, showed that the mechanism by which surfactants or BSA improve cellulose
conversions is through reducing or preventing adsorption of enzyme to lignin. This important discovery came
from the learning that while large increases in cellulose conversions and rates were seen in enzymatic hydrolysis
of lignocellulosic biomass with surfactant or BSA addition, these additives did not increase cellulose conversions
and rates in substrates devoid of lignin (Avicel, or delignified lignocellulosic biomass). It was also seen that sur-
factants or BSA had no effect on adsorption of cellulase to Avicel while they reduced adsorption of cellulase onto
lignin in lignocellulosic biomass. Now, while these studies found no effect of surfactants or BSA on lignin-free cel-
lulosic substrates such as Avicel, several articles from the past century show large effect of surfactants on hydrol-
ysis of pure cellulosic substrates such as Avicel, cotton, and newspaper by cellulases recovered from T. reesei and
other wood-rot fungi'®-!4. Despite extensive research, it has not been clear why some studies showed no effect,
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while others showed significant effect of surfactants on enzymatic hydrolysis of pure cellulosic substrates. Thus,
the purpose of this study was to better understand the mechanism of surfactants and BSA in enhancing hydrolysis
of pure cellulosic substrates by cellulases. Improving our knowledge of their impact on enzymatic hydrolysis is of
extreme importance to help define paths to reduce cellulase costs for industries that employ cellulases, especially
ones targeting production of renewable fuels and chemicals from renewable lignocellulosic biomass.

Several mechanisms have been put forward to explain the positive effect of surfactants on hydrolysis of
lignin-free (pure) cellulosic substrates by enzymes from wood-rotting fungi. Earliest records date to 1952 when
D. R. Whitaker!® proposed that this was due to stimulation of cellulase adsorbed onto insoluble cellulose sub-
strates by BSA. Elwyn T. Reese!® in 1980 proposed that shear stress caused deactivation of cellulase due to shak-
ing as enzymes were stable in absence of shaking. He proposed that in presence of cellulose, cellulases expose
their hydrophobic groups and denature due to aggregation through hydrophobic binding at shaken conditions.
He further noted that formation of protein-surfactant complexes reduces this aggregation, thus protecting the
enzyme. Castanon and Wilke!! in 1981 proposed that surfactants alleviate immobilization of enzymes on the
surface of insoluble cellulosic substrates to prevent them getting jammed or stuck. In a symposium in 1980'¢,
Reese and co-workers hypothesized that certain compounds may protect enzymes from shear or air-liquid
interface inactivation under shaking conditions. In 1982, they'” found that deactivation of enzymes was severe
at the air-liquid interface along with shear stress rather than shear stress alone. Ooshima et al. in 1986¢ pro-
posed that surfactants perturb the exoglucanase-endoglucanase adsorption ratio on the solid substrate surface
to favor enzymatic hydrolysis and simultaneous saccharification and fermentation (SSF). Helle et al.!* in 1993
suggested that surfactants possibly modify the surface of cellulose substrates and reduce inactivation of adsorbed
enzyme (enzyme immobilization). Apart from these mechanisms, it is also known that BSA!® and non-ionic
surfactants® are used to reduce nonspecific binding of proteins or peptides on solid vessel surface. It is also
possible that BSA or surfactants shield enzymes from product inhibition by glucose or protect against heat
deactivation due to long time reactions at 50 °C. Thus, a total of ten possible mechanisms can be proposed to
explain how surfactants could increase cellulose conversion: stimulation, lower shear stress, protection through
enzyme-surfactant complex, lower enzyme immobilization on cellulose, reduced loss at the air-liquid interface,
altered exoglucanase-endoglucanase adsorption ratio, substrate modification, reduced loss of enzyme on reaction
vessel walls, lower glucose inhibition, and reduced heat deactivation.

Our investigation involved Avicel as a model cellulosic substrate that contained 97% cellulose and 3% xylan by
weight as determined by compositional analysis of biomass?"?2. The DuPont’s Accellerase® 1500 cellulase enzyme
preparation employed had a protein content of 82 mg/ml as determined by bicinchoninic acid (BCA) assay**. The
filter paper activity (FPU) of this preparation was 0.5 FPU/mg, reported elsewhere?*?. First, the enzyme to sub-
strate ratio was varied in the presence of surfactant to define their effect on cellulose conversion. Then, the effects
of BSA, Tween 20, and defatted soybean flour were compared to determine if proteins and surfactants acted
differently. The possibility of amphiphilic additives working through prevention of nonspecific binding on glass
surface was investigated by comparing cellulose conversions in borosilicate glass, polycarbonate, and siliconized
Erlenmeyer glassware. Experiments without shaking were performed and substrate addition delayed to determine
the relevance of these effects in altering conversion. Then the air-liquid interfacial area of the reaction vessel was
varied while keeping the volume constant to understand the effect of air on cellulose conversion. Lastly, solids
with low and high lignin content produced by poplar pretreatment were hydrolyzed at low enzyme loading with
surfactant to determine the impact of surface deactivation on enzymatic conversion of lignocellulosic biomass
into fermentable sugars. Nearly 130 combinations that included other cellulosic substrates, biomass substrates,
another commercial enzyme preparation (Novozymes Cellic® CTec2), different substrate and surfactant loadings,
and several environmental conditions were carried out. This first report on this subject reveals that surface ten-
sion at the air-liquid interface was primarily responsible for cellulase deactivation resulting in low conversions at
low cellulase loadings. Additional findings on this work beyond what can be covered here will be published later.

Results and Discussion

Conditions similar to those applied by Yang and Wyman’ of high enzyme and BSA loading were applied first
to Avicel cellulose to confirm the effect of BSA on conversion. Figure 1 shows that 30 mg of enzyme achieved
nearly complete cellulose conversion to glucose and minor amounts of cellobiose, with both represented in their
anhydrous forms. Throughout this paper, all loadings of enzyme preparations or additives (BSA or Tween 20)
are expressed in milligrams per gram glucan in the substrate. Furthermore, the term enzyme refers to the com-
mercial Accellerase® 1500 cellulase preparation. Addition of 100 mg BSA added simultaneously to 30 mg enzyme
had no effect on rates or final cellulose conversion. However, addition of 5mg of BSA had a large positive effect
on conversion of Avicel at low enzyme loading of 5mg. For this low cellulase loading, although BSA had no
effect on initial reaction rates, beneficial effects started to appear after 24 hours of reaction, with an ultimate 40
percent absolute increase in cellulose conversion after 17 days. The fact that its impact was only apparent at low
enzyme loadings and not seen until after 24 hours of reaction explains why it was missed in prior studies with
high enzyme loadings or experimentation at shorter durations. Because Fig. 2 shows that BSA and Tween 20, a
non-ionic surfactant, had the same effect, the amphiphilic nature of BSA appears important to enhancing perfor-
mance. Since BSA and Tween 20 have a different hydrophilic-hydrophobic balance (HLB), their equivalent effect
on cellulose conversion suggests that a stimulation mechanism is unlikely. Moreover, stimulation would possibly
need an allosteric enzyme site that is inconsistent with the very different structures of BSA and Tween 20.

Soy flour was also employed to take advantage of the lower cost of high protein soybean meal of $324 to
$490 per metric ton over the last three years, as reported by the October 2016 USDA Feed Outlook®. It is also
compatible with microbes in subsequent ethanol fermentations®”. Soy flour addition also increased cellulose con-
version at the low enzyme loading. Soy flour contains soy lecithin (mixture of phospholipids), soy protein, and
soy saponin that exhibit surfactant behavior®. However, although the exact soluble surfactant concentration in

SCIENTIFICREPORTS | (2018) 8:1350 | DOI:10.1038/s41598-018-19848-3 2



www.nature.com/scientificreports/

30 mg Enz
+ 100 mg BSA
100
X
=)
.S 80+
&
>
g 60
S 60+
2
S
= 404
©
Q
20
0 m T T T T T T T T T
012345 7 9 11 17
4 hours Time (days)

Figure 1. Effect of BSA at low and high cellulase loadings on Avicel cellulose conversion. Low enzyme loading
curves show cellulose conversion for up to 17 days of enzymatic hydrolysis of Avicel (1% glucan loading) with
5mg enzyme (Accellerase® 1500) (square) and 5 mg enzyme with co-addition of 5mg BSA (triangle). High
enzyme loading curves show cellulose conversion for up to 9 days of enzymatic hydrolysis of Avicel (1% glucan
loading) with 30 mg enzyme (Accellerase® 1500) (circle) and 30 mg enzyme with co-addition of 100 mg BSA
(diamond). Enzyme and BSA loadings were based on mg per gram glucan in substrate. Error bars represent
standard deviation from three replicate flasks.
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Figure 2. Comparison of BSA, Tween, and soy flour on enzymatic hydrolysis of Avicel. From left to right,
columns show cellulose conversion after 5, 11, and 17 days of enzymatic hydrolysis of Avicel (1% glucan
loading) with 5 mg enzyme (Accellerase® 1500), with supplementation of 5mg BSA 30 hours before enzyme
addition, co-addition of 5mg BSA, with supplementation of 5mg of BSA 30 hours after enzyme addition, with
co-addition of 5mg Tween 20, and with co-addition of 5 mg soy flour, added based on per gram glucan in the
substrate. Error bars represent standard deviation from three replicate flasks.

the complex mixture was unknown, the low solubility of a large portion of soy flour in water likely resulted in
the smaller increase in cellulose conversion by enzymes than seen with addition of BSA or Tween 20. Overall,
we expect any additive with amphiphilic properties that does not denature enzyme should be able to cause this
effect, as evidenced by similar observations of enhanced enzymatic hydrolysis of cellulose by polyethylene gly-
cols?, 3-lactoglobulin, pepsin, lysozyme, gelatin, peptone'®, Tweens'®, Pluronics, Zonyl, polypropylene glycol,
polyvinyl pyrrolidone, Triton, Digitonin, methocyl, quarternary ammonium compounds!?, sophorolipid, rham-
nolipid, bacitracin'?, lecithins, phospholipids, and even cattle saliva® that contains muocproteins and saponins®'.
This diverse range includes cationic, anionic, zwitterionic, and non-ionic surfactants, as well as compounds that
cannot be strictly classified as surfactants as they do not form association colloids, and are hence termed as
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Figure 3. Effect of reaction vessel surface and shear on enzymatic hydrolysis of Avicel. Columns show cellulose
conversion after 5, 11, and 17 days of enzymatic hydrolysis of Avicel (1% glucan loading) with 5 mg enzyme
(Accellerase® 1500) and with co-addition of 5 mg Tween 20 added based on per gram glucan in substrate, in
borosilicate glass flasks, siliconized glass flasks, polycarbonate flasks, and borosilicate glass flasks containing 0.5
grams of glass powder. Error bars represent standard deviation from three replicate flasks.

amphiphilic additives®?. This study focused on finding the underlying cause of cellulase deactivation using the
most popular additives Tween and BSA rather than comparing different classes of these additives. Due to their
strong electrostatic interactions with proteins, charged surfactants like sodium dodecyl sulfate (SDS) can dena-
ture proteins at low concentrations. On the other hand, nonionic and zwitterionic surfactants with overall neutral
charge, in most cases, do not denature proteins®. Ooshima et al.!® reported that cationic Q-86W and anionic
Neopelex F-25 surfactants denatured cellulase above 0.008% and 0.001%, respectively, while zwitterionic Anhitol
20BS and nonionic Tween 20 did not.

Figure 2 shows that there were little differences in cellulose conversion through addition of BSA 30 hours
before addition of enzyme, co-addition of enzyme and BSA, or BSA addition 30 hours after enzyme. Since BSA
and Tween 20 show similar effects, further experiments were carried out with Tween 20 as it is less expensive
for commercial use. It is also compatible with ethanologenic organisms like Saccharomyces cerevisiae®* and
Zymomonas mobilis®®. Figure 3 shows that changing the reaction vessel from glass (hydrophilic, water contact
angle: 16°)* to polycarbonate (fairly hydrophobic, water contact angle: 70°)*” increased cellulose conversion by
5 percentage points at the end of reaction, whereas siliconized glass (hydrophobic, water contact angle: 90°)
reduced it by 8 percentage points®. This small variation in cellulose conversions with change of reaction vessel
material indicated that avoiding enzyme denaturation at the solid surface could not account for the benefits seen
with the additives. Interestingly, Tween 20 addition did not reduce these variations. These data point to an enzyme
binding mechanism not solely dependent on the hydrophobic or hydrophilic character of the vessel material but
that could be influenced by differences in electrostatic charge® or microscopic surface roughness®. In any case,
since the change in cellulose conversion due to nonspecific binding of enzyme on the solid vessel surface was
relatively small, it cannot account for large increase caused by amphiphilic additives as shown in Fig. 3.

To evaluate the role of shear stress might, 0.5 g of fine glass powder, made by crushing a 20 ml glass serum
vial with a hammer in a plastic bag, was added to the glass flasks before hydrolysis. Apart from increasing the
shear stress, the powered glass greatly increased the contact area between enzyme and glass. Although it was
expected that the greater shear stress resulting from shaking the glass powder would severely reduce cellulose
conversion, conversion surprisingly increased from 60 to 74%. Furthermore, in the presence of Tween 20 with
crushed glass, conversion increased even more to 94%. This outcome ruled out that Tween 20 reduced enzyme
deactivation due to shear stress but showed these enzymes were robust even in the presence of sharp surfaces.
Thus, it was hypothesized that the increase in cellulose conversions in the presence of crushed glass resulted from
particle size reduction and consequently increased Avicel surface area. Reese and co-workers*, on the other
hand, observed a large effect of shear stress, as their experimentation involved a flowthrough-type apparatus in
which flow rate was changed to affect shear stress in glass capillary tubing so that shear rate could be estimated
by the Hagen-Poiseuille equation*!. However, Erlenmeyer shaken flasks do not produce such high shear rates.
Furthermore, the glass powder experiments above reveal these cellulases are robust even in the presence of mov-
ing sharp glass surfaces.

Since surfactants are surface-active compounds, experiments were performed without shaking. Figure 4
shows that cellulose conversion with surfactant and shaking was similar to cellulose conversion without shak-
ing and without surfactant after 17 days, although the reaction rate was slower for the latter case. There was
no effect of surfactants on cellulose conversion without shaking. This result strongly indicated an air-liquid
interface mechanism. The National Renewable Energy Laboratory (NREL) standard procedure “Enzymatic
Saccharification of Lignocellulosic Biomass”# mentions that the shaking rate (rpm) of the reaction flasks should
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Figure 4. Effect of surfactant on enzymatic hydrolysis of Avicel with and without shaking. Columns show
cellulose conversion after 5, 11, and 17 days of enzymatic hydrolysis of Avicel (1% glucan loading) with 5mg
enzyme (Accellerase® 1500) and with co-addition of 5 mg of Tween 20 added based on per gram glucan in

the substrate, with and without shaking at 150 rpm. Avicel was either present initially or added 5 days after
incubation of enzyme or enzyme with surfactant in buffer solution. For Avicel added 5 days later, days were
counted after Avicel was added to the flask. Error bars represent standard deviation from three replicate flasks.

be chosen to maintain solids suspension. Because we observed that Avicel at 1% loading in 50 ml reaction volume
was suspended at around 125 rpm in a 125 ml Erlenmeyer flask, all of our shaking experiments were carried out at
150 rpm. However, the fact that cellulose conversions were higher without shaking than with shaking at 150 rpm
at low enzyme loading strongly suggested that maintaining a suspension is not always beneficial for achieving
high cellulose conversions. Flasks are shaken to improve mass-transfer and reduce localized sugar concentrations
that otherwise can be inhibitory to enzymes. However, while shaking increases reaction rates, it also deacti-
vates enzyme. Furthermore, activity loss by shaking should become more significant at low enzyme loadings,
resulting in lower cellulose conversion at the longer reaction times needed at low loadings. On the other hand,
this observation is not consistent with earlier proposed mechanisms that attribute activity loss to formation of a
protein-surfactant complex'’, protection against thermal deactivation, or less product inhibition as these possi-
bilities should not be influenced by whether the reaction medium was shaken or not. Likewise, as hypothesized in
substrate dependent mechanisms, enzyme immobilization due to jamming of cellulase'!, cellulose modification
by change in pore size'®, or change in exoglucanase-endoglucanase adsorption ratio on cellulose'® should affect
cellulose conversions in the presence of surfactants even if the flasks were not shaken. Based on the results that
deactivation was much more severe when air-bubbles were entrapped in a flowthrough capillary column than
by shear stress alone, Reese and co-workers!” hypothesized that the air-liquid interface plays a critical role in
cellulases deactivation.

Our results with conventional hydrolysis in Erlenmeyer flasks are consistent with the hypothesis that the
air-liquid interface alone was decisive in cellulase deactivation. However, to further rule out substrate depend-
ent mechanisms, Avicel cellulose was added to the reaction flasks five days after shaking was started with just
enzymes present. Figure 4 shows that cellulose conversions with or without surfactants were lower for shaking
flasks to which substrate was added after 5 days. This result is consistent with a significant fraction of enzymes
losing activity due to environmental factors when there was no substrate present initially. On the other hand, if
Avicel and enzymes are added together as in conventional shaking experiments, cellulase adsorption onto cel-
lulose due to affinity of their carbohydrate binding module (CBM) reduces their bulk concentration, and hence
less enzyme is deactivated at the air-liquid interface. Devoid of substrate, shaking exposes more enzyme to the
surface where they deactivate, and even 5 mg of Tween 20 was unable to completely avoid such deactivation in
absence of substrate.

Because changing the interfacial area should affect cellulose conversions if the air-liquid interface causes deac-
tivation, straightforward experiments were run with different interfacial surface areas by keeping the reaction
volume constant but changing the size of reaction vessel. The approximate ratio of static interfacial area for 10 ml
reaction volume in Erlenmeyer flasks of capacity 25:125:500 ml was 1:3.2:5.8. Figure 5 shows that high cellulose
conversions were realized with low interfacial area and shaking (10 ml in 25 ml flask). Furthermore, when sur-
factant was added to a 10 ml reaction volume in a 500 ml reaction flask where the interfacial area was very high,
cellulose conversions jumped up from 20 to 76%, clearly indicating that air-liquid interfacial area is the dominant
cause of cellulase deactivation at low enzyme loadings. Also, considerable precipitation of solids was observed
on walls of the 125 and 500 ml flasks that looked like a white ring at the highest point the liquid could reach in
shaken flasks.
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Figure 5. Effect of air-liquid interfacial area on enzymatic hydrolysis of Avicel with and without surfactant.
Columns show cellulose conversion after 5, 11, and 17 days of enzymatic hydrolysis of Avicel (1% glucan
loading) with 5 mg enzyme (Accellerase® 1500) and with co-addition of 5 mg of Tween 20 added based on per
gram glucan in substrate. Reaction volume was kept constant at 10 ml, and reactions were performed in 25, 125,
and 500 ml Erlenmeyer flasks. Error bars represent standard deviation from three replicate flasks.

Why cellulase enzymes at low enzyme to substrate ratios cannot efficiently solubilize crystalline cellulose
is a long-standing question. Based on published results including those by Whitaker et al.'®, Reese'’, Ooshima
et al."®, Castanon and Wilke'!, and Helle et al.,”® it wasn’t clear which mechanism is the prime driver for lowering
of cellulase deactivation by surfactant. In light of current results, it is worthwhile to delve into the past work by
Reese and co-workers on interfacial deactivation of cellulase. Reese and Mandels first introduced shaking induced
cellulase inactivation in a May 1979 paper*® followed shortly by another paper*’ by Reese and Ryu in October
1979 suggesting that shear may play the most important role in cellulase deactivation. In a March 1980 paper',
Reese proposed that shear and surface denaturation was minimized by a protein-surfactant complex that resists
changes in protein confirmations. This paper was followed by a conference proceeding (June-July 1980) chapter'¢
that hypothesized three possibilities: 1) surfactants prevented shear-induced conformational change or aided in
refolding of cellulase to native state; 2) shaking made it easier for proteases to change the cellulase confirmation;
and 3) inactivation due to shaking is a surface related phenomenon. In their last article in June 1981'7, Reese and
co-workers showed far more severe cellulase deactivation in the presence of air bubbles than from shear stress
alone in capillary tubing. However, the issue of cellulase deactivation and the role of surfactants took another turn
when a few years later Sakata, Ooshima, and Harano (1985) challenged Reese’s results by showing no difference
in rate of reaction or final conversion of Avicel cellulose by Trichoderma viride cellulase contained in 75 ml to
150 ml reaction volumes while stirring at 500 rpm at pH 4.8 and 40 °C in a cylindrical reactor. However, because
the 5wt% Avicel with 1 mg/ml cellulase used was equivalent to a high enzyme loading of 20 mg enzyme per g
cellulose, their experiment did not show any difference in cellulose conversion with changing reaction volume.
Next, Ooshima et al. in 1986 hypothesized that surfactants change the exoglucanase-endoglucanase ratio, while
Castanon and Wilke!! in 1981 and Helle et al.'* in 1993 indicated that surfactants reduce enzyme immobilization
to cellulose. Thus, further research was needed to build upon these findings for better understanding of cellulase
deactivation. In this work, the use of experimental approaches far different from those applied by Reese in com-
bination with conventional laboratory reactors (Erlenmeyer flasks) leave little doubt that deactivation of enzymes
at the air-liquid interface are the primary cause of incomplete cellulose conversion at low enzyme loadings, con-
sistent with the possible hypothesis first proposed by Reese and Mandels in 1979.

Proteins are known to deactivate at the air-liquid interface to minimize surface excess**. They can unfold and
expose their hydrophobic groups to the gas phase that were previously buried inside their tertiary structure in bulk
aqueous solution. Exclusion of hydrophobic regions from the aqueous phase decreases the free energy that drives
their adsorption in the interfacial layer***>. Because cellulases have a catalytic core and a carbohydrate binding mod-
ule (CBM) joined together by a linker region®, it is possible for hydrophobic platform of CBM that binds to cellu-
lose*” to orient itself toward the air phase and catalytic core toward the aqueous phase at the air-water interface. In
this case, reorientation of the enzyme may make cellulase deactivation reversible. On the other hand, partial unfold-
ing the cellulase that exposes the hydrophobic region in the active site of the catalytic core to the gas phase may be
irreversible. Precipitation seen in large flasks at the low reaction volume suggests enzymes underwent aggregation in
the interfacial layer. Such aggregations occur due to intermolecular hydrophobic interactions after their unfolding
and is known to be irreversible for many proteins®. Dr. Reese also showed that cellulase deactivation was irreversible
and found precipitation of protein in shaken flasks!®. Therefore, it is more likely that the catalytic core undergoes
unfolding rather than reorientation of CBM towards the gas phase.
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Without shaking at an enzyme loading of 5 mg, the amount of enzyme exposed to the interfacial surface where
it can be deactivated is too low to drop cellulose solubilization. However, shaking the flask at the same enzyme
loading allows displacement of deactivated enzyme in this layer by active enzyme arriving from bulk solution,
eventually making the ratio of deactivated to active enzyme large enough to affect cellulose conversion and reac-
tion rate. Surfactants, due to their higher surface activity than cellulases can form a network of surface domains at
the interface®, thereby reducing the amount of surface available for enzymes and the accompanying deactivation.
This network was apparently stable in shaken flasks at conditions tested in this study. At high enzyme loadings,
the amount of active enzyme is so large that most of the cellulose is hydrolyzed before enough enzyme can be
deactivated to affect conversion. On the other hand, it is possible that unfolded enzymes initially adsorbed in the
interfacial layer form a barrier® and that prevents further enzyme deactivation while leaving enough enzymes in
solutions at high loadings to still realize high conversions.

To further understand the responsible mechanism, enzymatic hydrolysis of lignocellulosic biomass was stud-
ied at low enzyme loading relevant to achieve low-cost sugar production for conversion to biofuels and renew-
able chemicals. As stated earlier, lignin can adsorb enzyme, and surfactants or proteins such as BSA block the
lignin surface from adsorbing enzyme. Therefore, dilute acid (DA) and CELF pretreatments were applied to BESC
standard poplar solids to leave high and low amounts of lignin in the pretreated solids, respectively. In particu-
lar, dilute acid pretreated poplar solids contained 64% glucan, 2% xylan, and 28% Klason lignin (acid insoluble
lignin) while solids from CELF pretreatment of poplar contained 90% glucan, 3% xylan and 4% Klason lignin.
A significant increase in enzymatic hydrolysis of the cellulose in DA pretreated poplar was only evident when a
large amount of surfactant (100 mg Tween 20) was added, consistent with surfactant blocking the lignin surface
from adsorbing enzyme. However, in the CELF pretreated poplar solids containing much less lignin, addition
of just a small amount of surfactant (5 mg Tween 20) increased the yield from 55 to 85%. It is important to note
that hydrolysis yields after 11 days of reaction without shaking and without surfactant were similar to those from
shaking combined with a low amount of surfactant for low-lignin lignocellulosic biomass but with the drawback
of slower reaction rate, similar to the results seen with Avicel cellulose. Enzyme added to a mixture of lignocellu-
losic biomass can bind to cellulose, lignin, or hemicellulose but to a lesser extent, remain in bulk solution, reside at
the interface to lower the free energy of the gas-liquid interface, and bind in limited quantities to the solid-liquid
interface. Furthermore, the concentration of enzyme on the cellulose surface, in the bulk solution, and at the
interface change with time reaction. When low amounts of a surface-active additive are added to biomass sol-
ids with high hydrophobic lignin content such as that from dilute acid pretreatment of poplar for hydrolysis at
low enzyme concentrations, most of the surfactant is bound to lignin, with little left at the interface. As a result,
enzymes still deactivate at the gas-liquid interfacial phase boundary, and the slight reduction in unproductive
binding of enzyme to lignin has a miniscule effect on cellulose conversion due to the fractional blocking of lignin
by surfactant. On the other hand, biomass solids with low lignin content produced by CELF pretreatment offer
a large number of cellulose binding sites while limiting the amount of lignin available for unproductive enzyme
binding. Thus, at low enzyme concentrations, addition of surfactant or absence of shaking reduces interfacial
deactivation of enzymes and increases active enzyme concentrations that allow large increase in cellulose conver-
sion, similar to that seen for Avicel cellulose. Moreover, this mechanism explains why BSA supplementation gen-
erally increased sugar yields from enzymatic hydrolysis of flowthrough pretreated poplar solids with lower lignin
content than batch pretreated poplar solids with higher lignin content?, contrary to the expectation that blocking
of lignin by BSA would have had a larger effect on cellulose conversion of batch pretreated poplar.

The high foaming of globular protein BSA®! results in strikingly similar effects to the surfactant Tween 20. BSA
lowers the surface tension of water from 72.5 to about 50 ergs/cm?°2. Like BSA, human serum albumin (HSA)
is also highly surface active, and accumulates at the air-liquid interface in a denatured but reversible state. These
albumins and surfactants orient their hydrophobic moieties towards the air (gas) phase to reduce solution surface
tension®. Additives such as polyethylene glycols and polypropylene glycols lower surface tension of water, and
their surface activity increases with concentration and degree of polymerization®. The earlier use of term “amphi-
philic additive” in this work could alternatively be labeled as “surface-active additives” or “surface-active agents”
as they reduce cellulase deactivation at the air-liquid interface.

In the natural environment of wood-rot fungi, small concentrations of extracellular cellulases are capable of
slowly degrading cellulose in wood over the course of several weeks without shaking as applied in laboratory
practice®. On the other hand, commercial enzyme preparations consist of T. reesei secretome supplemented with
B-glucosidase as the fungus does not naturally produce enough (-glucosidase to convert cellobiose to glucose
fast enough to prevent cellulose inhibition”***’. None of our extensive experiments showed increased cellobiose
concentrations that would indicate 3-glucosidase deactivation at the interface. However, proteomic analysis of
the commercial cellulase preparations used for deconstruction of lignocellulosic biomass show a broad array of
enzyme activities: roughly 40% cellobiohydrolases, 20% endoglucanases, 15% (3-glucosidases, 5% endoxylanases,
6 to 10% xyloglucanases, less than 2% each of acetyl xylan esterases, -arabinofuranosidases, a-glucuronosidase,
and 10 to 15% of non-cellulolytic enzymes and low-abundance glycosyl hydrolases®. Two studies indicated that
cellobiohydrolase IT (CBHIIL; also known as exoglucanase II or Cel6A), maybe susceptible to deactivation. A 1997
article suggested that CBH Il immobilization on cellulose is reduced by Tween 20, but their preparation had 90%
CBH II from T. viride. Another recent article®® indicated that CBH Il is only stabilized by Tween 80 at 30 °C under
agitation conditions, but despite finding agitation to be a decisive factor, the authors did not offer a mechanism
that could explain this effect. These two studies provide preliminary evidence that CBH II might be the compo-
nent in enzyme cocktail that is affected, but, in any case, the reason for its deactivation is unfolding at the interface
to minimize surface tension for achieving thermodynamic stability. However, commercial enzyme preparations
contain higher amounts of CBH I than CBH II, and a relatively high amount of endoglucanase I (EG I)*%. Since
cellulose conversions were at least 40 percentage points lower after 17 days when enzymes could liberally move to
the interfacial layer and deactivate in the absence of surfactant, this level of loss in cellulose conversion indicates
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CBH I and EG, and not just CBH II, may also be susceptible to deactivation. At this point, it is uncertain which
component is deactivated most at the interface as it is difficult to obtain pure enzymes in the amounts needed
for such a study. A further improvement can be made in targeting mass loadings of surfactant by determining
its critical micelle concentration (CMC) in the hydrolysis environment. CMC can be affected by substrate and
enzyme concentration, pH, ionic strength due to buffer and antibiotic, temperature, and time-dependent glucose
concentration in the liquid from reaction of solid substrate. A concentration that realizes a minimum in surface
tension is required, beyond which, the it will only accumulate as micelles in the bulk solution and increase the
cost of hydrolysis of lignin-free cellulosic substrate at low enzyme loading.

Cellulases appear to fall in the category of air-sensitive proteins like lysozyme and BSA and peptides such as
insulin® and recombinant human growth hormone (rhGH)®*% and need to be further explored. Since enzymes
stock solutions are almost always shaken to evenly distribute them before taking aliquots for experiments, add-
ing a small quantity of non-ionic or biological surface-active agent to current commercial enzyme preparations
might improve enzyme shelf-life. These experiments show that cellulases deactivate at the air-liquid interface to
lower free energy, resulting in incomplete Avicel hydrolysis at low enzyme loading. Thus, the results in this paper
showed that of ten possible mechanisms, the one first proposed by Reese and co-workers in 1980s is primarily
responsible for cellulase deactivation at low enzyme loadings. Moreover, cellulase deactivation at the air-liquid
interface significantly reduced hydrolysis of cellulose in solids with low lignin content at low enzyme loadings in
addition to pure cellulose. As a result, simply reducing the air-liquid interface of the cellulose-cellulase system
through selection of the proper size glassware for shaking can dramatically improve cellulose conversion at low
enzyme loadings. And adding small amounts of surface-active agents that do not denature the enzyme and are
compatible with downstream fermentation microbes could significantly lower activity loss by reducing cellulase
accumulation at the air-liquid interface.

Methods

Materials. Avicel (Avicel® PH-101, Fluka, Cat. No. 11365-1KG, Lot No. BCBN7864V), bovine serum albu-
min (BSA) (Cat. No. A7906-500G, Batch No. 078K0730), and defatted soybean flour (Cat. No. $9633, Lot No.
SLBL7333V, 52% approximate protein content and 85+% dispersible and 1% fat as noted by the manufacturer)
were purchased from Sigma-Aldrich Corp. at St. Louis, MO. Tween® 20 was purchased from Acros Organics (Lot
No. A0226412). Corning® Pyrex® 125 ml Erlenmeyer flasks made of borosilicate glass (Cat. No. 4985-125), 25 ml
Erlenmeyer flasks made of borosilicate glass, Kimble® Kimax® Valueware®, (Cat. No. 5650025EMD), 125 ml
Erlenmeyer flasks made of polycarbonate material Fisherbrand (Cat. No. PBV125), Corning® Pyrex® 500 ml
Erlenmeyer flasks made of borosilicate glass (Cat. No. 4995-500), tetrahydrofuran (certified) and 72 w/w% sulfu-
ric acid (Ricca Chemical) were all purchased through Fisher Scientific, Thermo Fisher Scientific Inc. at Waltham,
MA. Accellerase® 1500 (Batch No. 1662334068), was a kind gift from DuPont Industrial Biosciences at Palo Alto,
CA. Due to their high foaming tendency, 1% stock solutions of BSA or Tween 20 were made by weighing 1 gram
of BSA or Tween 20 in a tared 125 ml conical flask followed by addition of milli-Q water to reach a total mass of
100 grams for accuracy and reproducibility. For 1% soy protein stock solution, 2.3 grams of soy flour (considering
protein content of 52% and 85% dispersion) was weighed in a similar conical flask and brought to a total mass of
100 grams by adding milli-Q water. For experiments with glass powder (enhanced shear/high solid surface area),
a 20 ml borosilicate glass serum vial (Wheaton® Cat. No. 223687) was crushed with a metal hammer until the
particle size was about 0.250 mm as determined by passing through a no. 60 sieve (W.S. Tyler ASTM E11-09).
Although some of the powder was very fine, the larger and small particles were easily separated by gravity. 0.25g
each of the large and fine sizes were added to Erlenmeyer flask after addition of Avicel.

BESC (Bioenergy Science Center) standard poplar was provided by the National Renewable Energy
Laboratory (NREL), Golden, CO as chips and knife milled through a 1 mm screen (Model 4 Wiley Mill Thomas
Scientific, Swedesboro, NJ) at the University of California Riverside. Batch dilute acid (DA) and co-solvent
enhanced lignin fractionation (CELF) pretreatments were applied to 10% poplar solids loading in a 1 L Parr®
reactor (Parr Instruments, Moline, IL, USA) with a total reaction mass of 800 g. Dilute acid pretreatment of bio-
mass was carried out with 0.5 wt% sulfuric acid in water at 160 °C for 25 minutes. CELF pretreatment of the same
biomass was performed at 160 °C for 15 minutes in a mixture of equal volumes of 0.5 wt% sulfuric acid in water
and tetrahydrofuran solvent. Pretreated solids were vacuum filtered with Whatman® glass microfiber filter and
thoroughly washed with DI water. An elaborate description of the pretreatment procedure has been previously
documented®.

Reaction vessel preparation.  All flasks were first thoroughly scrubbed and cleaned with lab detergent,
followed by several washings with tap water and finally with deionized water, and dried at 105 °C for 24 hours.
For siliconized glass experiments, 125 ml Erlenmeyer flasks were siliconized with Aquasil® siliconizing fluid (Cat.
No. TS42799, Thermo Scientific, Thermo Fisher Scientific Inc.). Freshly prepared 1% Aquasil solution in Milli-Q
water was added to flasks up to 125 ml mark and shaken for 15 seconds. The solution was drained and the flasks
were washed twice with 100% methanol (Fisher Scientific, Thermo Fisher Scientific Inc.) and dried at 105°C for
6hours.

Compositional analyses. Composition of Avicel cellulose as determined by the standard NREL proce-
dure “Determination of Structural Carbohydrates and Lignin in Biomass” was 97% glucan and 3% xylan by
mass®!. Avicel had an average 4 wt. % moisture content as determined by a halogen moisture analyzer (HB43-S;
Mettler-Toledo, Columbus, OH). Wet pretreated solids were dried at 40 & 1 °C in an incubator for several days
until the moisture content dropped to about 5% before compositional analysis.
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Figure 6. Effect of surfactant and shaking on enzymatic hydrolysis of dilute acid and CELF pretreated poplar.
Columns show cellulose conversion after 5, 11, and 17 days of enzymatic hydrolysis of dilute acid (0.5%
H,S0O,) and CELF (0.5% H,SO, in 1:1 H,O:THF) pretreated poplar (1% glucan loading) with 5 mg enzyme
(Accellerase® 1500) with and without shaking at 150 rpm, and with co-addition of 5mg or 100 mg of Tween
20 added based on per gram glucan in substrate. Error bars represent standard deviation from three replicate
flasks.

Enzymatic hydrolyses. All enzymatic hydrolysis runs were according to the NREL standard procedure
“Enzymatic Saccharification of Lignocellulosic Biomass™®® with only the following modifications. All experiments
were done at 1 w/v% glucan loading of Avicel or pretreated poplar. Never-dried pretreated poplar solids were used
for enzymatic hydrolysis to avoid drying possibly collapsing pores and thereby lowering cellulose accessibility.
The reaction volume was 50 ml performed in 125 ml Erlenmeyer flasks in all experiments except those evaluat-
ing the effect of interfacial area (Fig. 5) for which 10 ml of reaction volume was carried out in 25, 125, or 500 ml
Erlenmeyer flasks. The static interfacial areas measured with a ruler or Vernier calipers of 10 ml reaction volume
for 25, 125, and 500 ml flasks were 7.9 cm?, 25.6 cm?, and 45.6 cm?, respectively. All experiments were carried out
in reaction vessels made of borosilicate glass except those evaluating the effect of reaction vessel surface or shear
(Fig. 3) for which siliconized borosilicate glass flasks, polycarbonate flasks, and borosilicate glass flasks containing
0.5 grams of glass powder were used along with borosilicate glass flasks. All enzymatic hydrolyses were carried out
in 50 mM sodium citrate buffer at pH 5.0, 50 °C, and 150 rpm for shaking experiments and 0 rpm for those with-
out shaking. Orbital shaking was in a Multitron Standard (Infors® HT Biotech, Laurel, MD) that held the flasks
firmly with sticky pads. In addition to the temperature reading visible in the LCD panel, a K-type thermocouple
(Omega Engineering Co., Stamford, CT) was inserted inside the shaker in several locations as a secondary meas-
ure to assure temperature stability. Accellerase® 1500 with a BCA protein content of 82 mg/ml** was diluted 20
times to 4.1 mg/ml in 50 mM citrate buffer in 100 ml borosilicate glass volumetric flasks. Accellerase® 1500, BSA,
Tween 20, and soy loadings were based on milligrams of protein or surfactant per gram glucan in the substrate.
In all experiments including no shaking experiments, the reaction medium was shaken gently after addition of
enzyme. In the co-addition experiments, BSA, Tween, or soy was added to the Erlenmeyer flask quickly after the
enzyme of (co-addition). Loading of Accellerase® 1500 was either 5 or 30 mg protein per gram glucan in Avicel.
5mg or 100 mg BSA or Tween 20 was also added based on grams of glucan in Avicel. Loading of Accellerase®
1500 was 5mg protein per gram glucan in unpretreated poplar for lignocellulosic biomass experiments (Fig. 6).
Glucan yields from the pretreatment process were 96% and 100% for DA and CELF pretreatments, respectively,
making enzyme loading in enzymatic hydrolysis flask as 5.2 mg for DA and 5 mg for CELF on per gram glucan
basis. This enzyme loading method involving a pretreatment process have been documented previously®*. 5mg
or 100 mg Tween 20 was added based on grams of glucan in pretreated poplar. In cellulose conversion vs. time
experiments (Fig. 1), sampling for 5mg cellulase, co-addition of 5 mg BSA and 5mg cellulase, 30 mg cellulase,
co-addition of 30 mg cellulase and 100 mg BSA, were at 4, 24, 48, 72, 96, 120, 168, 216, 264, and 408 hours after
enzyme addition. For all other conditions, sampling was at 120, 264, and 408 hours.

Enzymatic hydrolysis results for all conditions were determined from three replicates in Erlenmeyer flasks.
Error bars in all figures represent sample standard deviation from three replicate flasks. For no shaking exper-
iments, separate flasks were kept for each time point (120, 264, and 408 hours) to not to disturb the reaction
medium. Sampling was by withdrawing a 0.5 ml homogenous aliquot followed by centrifugation in a fixed-angle
centrifuge (Eppendorf® Microcentrifuge Model 5424, Eppendorf North America, Hauppauge, NY) at 15000 rpm
for 5minutes. The supernatants were analyzed on a Waters® 2695 Separations Module with detection on Waters®
2414 RI detector (Waters Corp., Milford MA) equipped with a Bio-Rad® Aminex® HPX-87H column condi-
tioned at 65 °C using 5mM sulfuric acid mobile phase at a flow rate of 0.6 ml/min for all separations. Cellulose
conversion was calculated by:
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Cellulose conversion (glucan yield%) =

(Glucose (%) + (Cellobiose(%) * 1.053)) * Reaction volume (ml) * 0.9 % 100

Glucan in cellulosic substrate (mg)

where 0.9 accounts for the mass of water added to cellulose (glucan) during enzymatic hydrolysis and 1.053
accounts for the addition of water to form glucose from cellobiose. A soy flour blank was also kept along with
other flasks that contained 5 mg soy flour and 5 mg Accellerase 1500 similar to other experiments with substrate
and soy as additive. An HPLC chromatogram showed no carbohydrates or any other soy flour derived compo-
nents to be present. In the experiments that studied effect of interfacial area (Fig. 5), aliquots from 10 ml reaction
volume in 500 ml flask in presence of surfactant after 11 days of reaction could not be analyzed. Thus, only cel-
lulose conversion after 5 and 17 days of reaction are shown for this condition. Sampling could not be done for
no surfactant and no shaking condition of CELF pretreated poplar (Fig. 6) after 17 days of reaction, and only
conversions after 5 and 11 days of reaction are shown.

Data Availability. All data generated or analyzed during this study are included in this published article.

References

1. Ryu, D. D. Y. & Mandels, M. Cellulases: Biosynthesis and applications. Enzyme Microb Tech 2, 91-102, https://doi.org/10.1016/0141-
0229(80)90063-0 (1980).

2. Wyman, C. E. What is (and is not) vital to advancing cellulosic ethanol. Trends in biotechnology 25, 153-157, https://doi.
org/10.1016/j.tibtech.2007.02.009 (2007).

3. Kumar, R. & Wyman, C. E. Strong cellulase inhibition by Mannan polysaccharides in cellulose conversion to sugars. Biotechnol
Bioeng 111, 1341-1353, https://doi.org/10.1002/bit.25218 (2014).

4. Bhagia, S., Kumar, R. & Wyman, C. E. Effects of dilute acid and flowthrough pretreatments and BSA supplementation on enzymatic
deconstruction of poplar by cellulase and xylanase. Carbohydrate Polymers 157, 1940-1948, https://doi.org/10.1016/j.
carbpol.2016.11.085 (2017).

5. Kaar, W. E. & Holtzapple, M. T. Benefits from tween during enzymic hydrolysis of corn stover. Biotechnol Bioeng 59, 419-427 (1998).

6. Kawamoto, H., Nakatsubo, F. & Murakami, K. Protein-adsorbing capacities of lignin samples. Journal of the Japan Wood Research
Society (Japan) (1992).

7. Kumar, R. & Wyman, C. E. Effects of cellulase and xylanase enzymes on the deconstruction of solids from pretreatment of poplar by
leading technologies. Biotechnol Prog 25, 302-314, https://doi.org/10.1002/btpr.102 (2009).

8. Eriksson, T., Borjesson, J. & Tjerneld, E. Mechanism of surfactant effect in enzymatic hydrolysis of lignocellulose. Enzyme Microb
Technol 31, 353-364, https://doi.org/10.1016/s0141-0229(02)00134-5 (2002).

9. Yang, B. & Wyman, C. E. BSA treatment to enhance enzymatic hydrolysis of cellulose in lignin containing substrates. Biotechnol
Bioeng 94, 611-617, https://doi.org/10.1002/bit.20750 (2006).

10. Reese, E. T. Inactivation of cellulase by shaking and its prevention by surfactants. Journal of Applied Biochemistry 2, 36-39 (1980).

11. Castanon, M. & Wilke, C. R. Effects of the surfactant tween 80 on enzymatic hydrolysis of newspaper. Biotechnology and
Bioengineering 23, 1365-1372, https://doi.org/10.1002/bit.260230615 (1981).

12. Park, J. W,, Takahata, Y., Kajiuchi, T. & Akehata, T. Effects of nonionic surfactant on enzymatic hydrolysis of used newspaper.
Biotechnol Bioeng 39, 117-120, https://doi.org/10.1002/bit.260390117 (1992).

13. Helle, S. S., Duff, S.J. B. & Cooper, D. G. Effect of surfactants on cellulose hydrolysis. Biotechnology and Bioengineering 42, 611-617,
https://doi.org/10.1002/bit.260420509 (1993).

14. Kumar, R. & Wyman, C. E. Effect of additives on the digestibility of corn stover solids following pretreatment by leading
technologies. Biotechnology and Bioengineering 102, 1544-1557, https://doi.org/10.1002/bit.22203 (2009).

15. Whitaker, D. An effect of proteins and proteoses on the cellulase of Myrothecium verrucaria. Science 116, 90-92 (1952).

16. Reese, E. T. In Solution Behavior of Surfactants: Theoretical and Applied Aspects Volume 2 (eds K. L. Mittal & E. J. Fendler) 1487-1504
(Springer US, 1982).

17. Kim, M. H,, Lee, S. B., Ryu, D. D. Y. & Reese, E. T. Surface deactivation of cellulase and Its prevention. Enzyme Microb Tech 4,
99-103, https://doi.org/10.1016/0141-0229(82)90090-4 (1982).

18. Ooshima, H., Sakata, M. & Harano, Y. Enhancement of enzymatic hydrolysis of cellulose by surfactant. Biotechnology and
Bioengineering 28, 1727-1734, https://doi.org/10.1002/bit.260281117 (1986).

19. Claesson, P. M., Blomberg, E., Froberg, J. C., Nylander, T. & Arnebrant, T. Protein interactions at solid surfaces. Advances in Colloid
and Interface Science 57, 161-227, https://doi.org/10.1016/0001-8686(95)00241-H (1995).

20. Duncan, M. R,, Lee, J. M. & Warchol, M. P. Influence of surfactants upon protein/peptide adsorption to glass and polypropylene.
International Journal of Pharmaceutics 120, 179-188, https://doi.org/10.1016/0378-5173(94)00402-Q (1995).

21. Sluiter, A. et al. Determination of structural carbohydrates and lignin in biomass. Laboratory Analytical Procedure, National
Renewable Energy Laboratory (2008).

22. Bhagia, S., Nunez, A., Wyman, C. E. & Kumar, R. Robustness of two-step acid hydrolysis procedure for composition analysis of
poplar. Bioresource technology 216, 1077-1082, https://doi.org/10.1016/j.biortech.2016.04.138 (2016).

23. Smith, P. K. et al. Measurement of protein using bicinchoninic acid. Anal Biochem 150, https://doi.org/10.1016/0003-2697(85)90442-
7 (1985).

24. Alvira, P, Negro, M. J. & Ballesteros, M. Effect of endoxylanase and alpha-L-arabinofuranosidase supplementation on the enzymatic
hydrolysis of steam exploded wheat straw. Bioresource technology 102, 4552-4558, https://doi.org/10.1016/j.biortech.2010.12.112
(2011).

25. Kumar, R. et al. Carbohydrate derived-pseudo-lignin can retard cellulose biological conversion. Biotechnol Bioeng, https://doi.
org/10.1002/bit.24744 (2012).

26. USDA. Feed Outlook Doc. No. FDS-16j. USDA Economic Research Service (2016).

27. Zhao, H., Wan, C., Zhao, M., Lei, H. & Mo, E. Effects of soy protein hydrolysates on the growth and fermentation performances of
brewer’s yeast. International Journal of Food Science & Technology 49, 2015-2022, https://doi.org/10.1111/ijfs.12503 (2014).

28. Xu, Q., Nakajima, M., Shiina, T. & Liu, Z. Soybean-based surfactants and their applications. INTECH Open Access Publisher, 2011).
29. Hsieh, C. W. C,, Cannella, D., Jorgensen, H., Felby, C. & Thygesen, L. G. Cellobiohydrolase and endoglucanase respond differently
to surfactants during the hydrolysis of cellulose. Biotechnology for biofuels 8, https://doi.org/10.1186/s13068-015-0242-y (2015).

30. Seki, Y. et al. Enhancement of cellulose degradation by cattle saliva. PloS one 10, https://doi.org/10.1371/journal.pone.0138902
(2015).

31. Mangan, J. Bloat in cattle: XI. The foaming properties of proteins, saponins, and rumen liquor. New Zealand journal of agricultural
research 2, 47-61 (1959).

SCIENTIFICREPORTS | (2018) 8:1350 | DOI:10.1038/s41598-018-19848-3 10


http://dx.doi.org/10.1016/0141-0229(80)90063-0
http://dx.doi.org/10.1016/0141-0229(80)90063-0
http://dx.doi.org/10.1016/j.tibtech.2007.02.009
http://dx.doi.org/10.1016/j.tibtech.2007.02.009
http://dx.doi.org/10.1002/bit.25218
http://dx.doi.org/10.1016/j.carbpol.2016.11.085
http://dx.doi.org/10.1016/j.carbpol.2016.11.085
http://dx.doi.org/10.1002/btpr.102
http://dx.doi.org/10.1016/s0141-0229(02)00134-5
http://dx.doi.org/10.1002/bit.20750
http://dx.doi.org/10.1002/bit.260230615
http://dx.doi.org/10.1002/bit.260390117
http://dx.doi.org/10.1002/bit.260420509
http://dx.doi.org/10.1002/bit.22203
http://dx.doi.org/10.1016/0141-0229(82)90090-4
http://dx.doi.org/10.1002/bit.260281117
http://dx.doi.org/10.1016/0001-8686(95)00241-H
http://dx.doi.org/10.1016/0378-5173(94)00402-Q
http://dx.doi.org/10.1016/j.biortech.2016.04.138
http://dx.doi.org/10.1016/0003-2697(85)90442-7
http://dx.doi.org/10.1016/0003-2697(85)90442-7
http://dx.doi.org/10.1016/j.biortech.2010.12.112
http://dx.doi.org/10.1002/bit.24744
http://dx.doi.org/10.1002/bit.24744
http://dx.doi.org/10.1111/ijfs.12503
http://dx.doi.org/10.1186/s13068-015-0242-y
http://dx.doi.org/10.1371/journal.pone.0138902

www.nature.com/scientificreports/

32. Davis, H. T., Bodet, J. E, Scriven, L. E. & Miller, W. G. In Physics of Amphiphilic Layers: Proceedings of the Workshop, Les Houches, France
February 10-19, 1987 (eds Jacques Meunier, Dominique Langevin, & Nino Boccara) 310-327 (Springer Berlin Heidelberg, 1987).

33. Otzen, D. Protein-surfactant interactions: A tale of many states. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 1814,
562-591, https://doi.org/10.1016/j.bbapap.2011.03.003 (2011).

34. Alkasrawi, M. et al. The effect of Tween-20 on simultaneous saccharification and fermentation of softwood to ethanol. Enzyme
Microb Tech 33, 71-78, https://doi.org/10.1016/S0141-0229(03)00087-5 (2003).

35. Zikmanis, P, Shakirova, L., Auzina, L. & Andersone, I. Hydrophobicity of bacteria Zymomonas mobilis under varied environmental
conditions. Process Biochemistry 42, 745-750, https://doi.org/10.1016/j.procbio.2007.01.002 (2007).

36. Ikada, Y. et al. Blood compatibility of hydrophilic polymers. Journal of biomedical materials research 15, 697-718, https://doi.
org/10.1002/jbm.820150507 (1981).

37. In Encyclopedia of Microfluidics and Nanofluidics (ed Dongging Li) 67-67 (Springer US, 2008).

38. Goebel-Stengel, M., Stengel, A., Taché, Y. & Reeve, J. R. The importance of using the optimal plastic and glassware in studies
involving peptides. Analytical Biochemistry 414, 38-46, https://doi.org/10.1016/j.ab.2011.02.009 (2011).

39. Preedy, E., Perni, S., Nipic, D., Bohinc, K. & Prokopovich, P. Surface roughness mediated adhesion forces between borosilicate glass
and gram-positive bacteria. Langmuir 30, 9466-9476, https://doi.org/10.1021/1a501711t (2014).

40. Reese, E. T. & Ryu, D. Y. Shear inactivation of cellulase of Trichoderma reesei. Enzyme Microb Tech 2, 239-240, https://doi.
org/10.1016/0141-0229(80)90054-X (1980).

41. Sutera, S. P. & Skalak, R. The history of Poiseuille’s law. Annual Review of Fluid Mechanics 25, 1-20 (1993).

42. Selig, M., Weiss, N. & Ji, Y. Enzymatic saccharification of lignocellulosic biomass. Laboratory Analytical Procedure (LAP) (2008).

43. Reese, E. T. & Mandels, M. Stability of the Cellulase of Trichoderma reesei under use conditions. Biotechnology and Bioengineering
22, 323-335, https://doi.org/10.1002/bit.260220207 (1980).

44. James, L. K. & Augenstein, L. G. Adsorption of enzymes at interfaces: film formation and the effect on activity. Advances in
enzymology and related areas of molecular biology 28, 1-40 (1966).

45. Narsimhan, G. & Uraizee, F. Kinetics of Adsorption of Globular Proteins at an Air-Water Interface. Biotechnol Progr 8, 187-196,
https://doi.org/10.1021/bp00015a003 (1992).

46. Van Tilbeurgh, H., Tomme, P, Claeyssens, M., Bhikhabhai, R. & Pettersson, G. Limited proteolysis of the cellobiohydrolase I from
Trichoderma reesei. FEBS letters 204, 223-227, https://doi.org/10.1016/0014-5793(86)80816-X (1986).

47. Boraston, A. B., Bolam, D. N, Gilbert, H. J. & Davies, G. J. Carbohydrate-binding modules: fine-tuning polysaccharide recognition.
Biochemical Journal 382, 769-781, https://doi.org/10.1042/BJ20040892 (2004).

48. Treuheit, M. J., Kosky, A. A. & Brems, D. N. Inverse Relationship of Protein Concentration and Aggregation. Pharmaceutical research
19, 511-516, https://doi.org/10.1023/A:1015108115452 (2002).

49. Gunning, P. A. et al. The effect of surfactant type on protein displacement from the air-water interface. Food Hydrocolloid 18,
509-515, https://doi.org/10.1016/j.foodhyd.2003.08.008 (2004).

50. Lad, M. D., Birembaut, F, Matthew, J. M., Frazier, R. A. & Green, R. ]. The adsorbed conformation of globular proteins at the air/

water interface. Phys Chem Chem Phys 8,2179-2186, https://doi.org/10.1039/B515934B (2006).
. Graham, D. E. & Phillips, M. C. Proteins at liquid interfaces. J Colloid Interf Sci 70, 415-426, https://doi.org/10.1016/0021-
9797(79)90049-3 (1979).

52. Absolom, D. R, Van Oss, C. ], Zingg, W. & Neumann, A. W. Determination of surface tensions of proteins II. Surface tension of
serum albumin, altered at the protein-air interface. Biochimica et Biophysica Acta (BBA) - Protein Structure 670, 74-78, https://doi.
org/10.1016/0005-2795(81)90050-7 (1981).

53. Docoslis, A., Giese, R. E. & van Oss, C. J. Influence of the water-air interface on the apparent surface tension of aqueous solutions of
hydrophilic solutes. Colloids and Surfaces B: Biointerfaces 19, 147-162, https://doi.org/10.1016/S0927-7765(00)00137-5 (2000).

54. Schwuger, M. J. Mechanism of interaction between ionic surfactants and polyglycol ethers in water. Journal of colloid and interface
science 43, 491-498, https://doi.org/10.1016/0021-9797(73)90395-0 (1973).

55. Wilcox, W. W. Anatomical changes in wood cell walls attacked by fungi and bacteria. The Botanical Review 36, 1-28 (1970).

56. Garcia-Aparicio, M. P. et al. Effect of inhibitors released during steam-explosion pretreatment of barley straw on enzymatic
hydrolysis. Applied biochemistry and biotechnology 129, 278-288, https://doi.org/10.1385/ABAB:129:1:278 (2006).

57. Kumar, R. & Wyman, C. E. Effect of enzyme supplementation at moderate cellulase loadings on initial glucose and xylose release
from corn stover solids pretreated by leading technologies. Biotechnol Bioeng 102, 457-467, https://doi.org/10.1002/bit.22068
(2009).

58. Chundawat, S. P. S. et al. Proteomics-based Compositional Analysis of Complex Cellulase-Hemicellulase Mixtures. Journal of
proteome research 10, 4365-4372, https://doi.org/10.1021/pr101234z (2011).

59. Kim, D., Jang, Y. H,, Jeong, Y. K. & Son, K. H. Effect of a nonionic surfactant on the adsorption and kinetic mechanism for the
hydrolysis of microcrystalline cellulose by endoglucanase I and exoglucanase II. Bull. Korean Chem. Soc 18, 300-305 (1997).

60. Okino, S., Ikeo, M., Ueno, Y. & Taneda, D. Effects of Tween 80 on cellulase stability under agitated conditions. Bioresource technology
142, 535-539, https://doi.org/10.1016/j.biortech.2013.05.078 (2013).

61. Sluzky, V., Klibanov, A. M. & Langer, R. Mechanism of insulin aggregation and stabilization in agitated aqueous solutions. Biotechnol
Bioeng 40, 895-903, https://doi.org/10.1002/bit.260400805 (1992).

62. Maa, Y. FE & Hsu, C. C. Protein denaturation by combined effect of shear and air-liquid interface. Biotechnol Bioeng 54, 503-512 (1997).

63. Maa, Y.-E, Nguyen, P.-A. T. & Hsu, S. W. Spray-drying of air-liquid interface sensitive recombinant human growth hormone. Journal
of pharmaceutical sciences 87, 152159, https://doi.org/10.1021/js970308x (1998).

64. Bhagia, S., Li, H., Gao, X., Kumar, R. & Wyman, C. E. Flowthrough pretreatment with very dilute acid provides insights into high
lignin contribution to biomass recalcitrance. Biotechnology for biofuels 9, 245, https://doi.org/10.1186/s13068-016-0660-5 (2016).

65. Selig, M., Weiss N., Ji Y. Enzyamtic Saccharification of Lignocellulosic Biomass. Report No. 42629, (2008).

5

—

Acknowledgements

We are grateful for funding by the Office of Biological and Environmental Research in the Department of Energy
(DOE) Office of Science through the BioEnergy Science Center (BESC) at Oak Ridge National Laboratory
(Contract DE-PS02-06ER64304). We also acknowledge the Ford Motor Company for funding the Chair in
Environmental Engineering that facilitates projects such as this one and the Center for Environmental Research
and Technology (CE-CERT) of the Bourns College of Engineering for providing the facilities.

Author Contributions

S.B., R.K. and C.E.W. designed the experiments. S.B. carried out all experiments except pretreatments of poplar
and their compositional analysis, and wrote the first draft of the manuscript. R.D. carried out pretreatments of
poplar and their compositional analysis, and assisted in delayed Avicel substrate addition and effect of varying
interfacial area experiments, as well as H.P.L.C. quantification. S.B., R.K. and C.E.W. wrote and edited the
manuscript. All authors read and approved the final manuscript.

SCIENTIFICREPORTS | (2018) 8:1350 | DOI:10.1038/s41598-018-19848-3 11


http://dx.doi.org/10.1016/j.bbapap.2011.03.003
http://dx.doi.org/10.1016/S0141-0229(03)00087-5
http://dx.doi.org/10.1016/j.procbio.2007.01.002
http://dx.doi.org/10.1002/jbm.820150507
http://dx.doi.org/10.1002/jbm.820150507
http://dx.doi.org/10.1016/j.ab.2011.02.009
http://dx.doi.org/10.1021/la501711t
http://dx.doi.org/10.1016/0141-0229(80)90054-X
http://dx.doi.org/10.1016/0141-0229(80)90054-X
http://dx.doi.org/10.1002/bit.260220207
http://dx.doi.org/10.1021/bp00015a003
http://dx.doi.org/10.1016/0014-5793(86)80816-X
http://dx.doi.org/10.1042/BJ20040892
http://dx.doi.org/10.1023/A:1015108115452
http://dx.doi.org/10.1016/j.foodhyd.2003.08.008
http://dx.doi.org/10.1039/B515934B
http://dx.doi.org/10.1016/0021-9797(79)90049-3
http://dx.doi.org/10.1016/0021-9797(79)90049-3
http://dx.doi.org/10.1016/0005-2795(81)90050-7
http://dx.doi.org/10.1016/0005-2795(81)90050-7
http://dx.doi.org/10.1016/S0927-7765(00)00137-5
http://dx.doi.org/10.1016/0021-9797(73)90395-0
http://dx.doi.org/10.1385/ABAB:129:1:278
http://dx.doi.org/10.1002/bit.22068
http://dx.doi.org/10.1021/pr101234z
http://dx.doi.org/10.1016/j.biortech.2013.05.078
http://dx.doi.org/10.1002/bit.260400805
http://dx.doi.org/10.1021/js970308x
http://dx.doi.org/10.1186/s13068-016-0660-5

www.nature.com/scientificreports/

Additional Information
Competing Interests: C.E.W. is a cofounder of Mascoma Corporation and former chair of their Scientific
Advisory Board. C.E.W. is also founding Editor-in-Chief of Biotechnology for Biofuels.

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International

CE ] icense, which permits use, sharing, adaptation, distribution and reproduction in any medium or
format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2018

SCIENTIFICREPORTS | (2018) 8:1350 | DOI:10.1038/s41598-018-19848-3 12


http://creativecommons.org/licenses/by/4.0/

	Deactivation of Cellulase at the Air-Liquid Interface Is the Main Cause of Incomplete Cellulose Conversion at Low Enzyme Lo ...
	Results and Discussion

	Methods

	Materials. 
	Reaction vessel preparation. 
	Compositional analyses. 
	Enzymatic hydrolyses. 
	Data Availability. 

	Acknowledgements

	Figure 1 Effect of BSA at low and high cellulase loadings on Avicel cellulose conversion.
	Figure 2 Comparison of BSA, Tween, and soy flour on enzymatic hydrolysis of Avicel.
	Figure 3 Effect of reaction vessel surface and shear on enzymatic hydrolysis of Avicel.
	Figure 4 Effect of surfactant on enzymatic hydrolysis of Avicel with and without shaking.
	Figure 5 Effect of air-liquid interfacial area on enzymatic hydrolysis of Avicel with and without surfactant.
	Figure 6 Effect of surfactant and shaking on enzymatic hydrolysis of dilute acid and CELF pretreated poplar.




