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Key features of pretreated lignocelluloses biomass
solids and their impact on hydrolysis

R. KUMAR, Zymetis, Inc., USA and
C.E. WYMAN, University of California, USA

Abstract: Prior to biological conversion of lignocellulosic biomass to
ethanol or other products, natural barriers developed to protect plants must
be overcome to realize efficient enzymatic hydrolysis, and a few .
pretreatment technologies are effective in inexpensively accomplishing this
task through heating with chemicals. Over the years, changes in a number of
structural and compositional attributes of biomass have been postulated to
explain how pretreatment enhances enzymatic hydrolysis un_‘mo_.am.:nm, 7_.:
the complexity of biomass has always confounded development of a :E:na
theory that can unequivocally predict how pretreated biomass mo_Em will
respond to enzymes. However, sugar release can be viewed as ultimately
governed by two factors: 1) access of enzymes to cellulose and )
hemicellulose and 2) the effectiveness of enzymes attached to the surface in
breaking down these carbohydrate chains to sugars and/or their c:rmoam.hﬁ. In
this review, this perspective of enzyme access and effectiveness is uvv__q.a to
findings reported in the literature to provide a framework for ::am_ﬂ.m:aim
how various features in pretreated biomass solids could affect deconstruction
of cellulose and hemicellulose to sugars and their yields.

Key words: cellulase, cellulose, hemicelluloses. biomass, adsorption,
accessibility, effectiveness. hydrolysis.

31 Introduction

Biological conversion of cellulosic biomass such as agricultural (e.g., corn
stover) and forestry residues (e.g., sawdust) and herbaceous (e.g., switchgrass)
and woody (e.g.. poplar wood) energy crops into ethanol and other products
offers the high yields to products vital to economic success, the potential for
very low costs, and important strategic, environmental. and economic benefits
(Farrell et al., 2006; Gomez et al., 2008; Lynd er al., 1991, 1996, 1999;
Ragauskas et al., 2006; Schubert, 2006; Tilman et al., 2006; Wyman. 1999,
2003; Zhang, 2008). However, cellulosic materials have developed a natural
resistance to biological attack to assure survival (Dhugga, 2007; Himmel ef al..
2007), and a pretreatment step must be employed to overcome this resistance to
high sugar vields (Chandra er al., 2007; Grethlein, 1984; Lynd er al.. 2008;
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Mosier et al., 2005; Sun and Cheng, 2002; Weil ef al., 1994: Yang and Wyman,
2008). Dilute sulfuric acid is a leading option, but one economic study has
projected it to be the most expensive single step in biomass conversion (Wooley
et al., 1999). A few other pretreatment technologies based on heating biomass
with ammonia, pH buffers, lime, or sulfur dioxide give similar cost and
performance to dilute sulfuric acid (Mosier ez al., 2005: Wyman et al., 2005a,
2005b), but lower cost options are still needed. In addition. the significant
repercussions of pretreatment for other processing steps must be fully
considered in the choice of pretreatment (Yang and Wyman, 2008).

A more complete understanding of fundamental mechanisms responsible for
pretreatment effectiveness would help accelerate development of lower cost
approaches and improve their integration into the overall process (Wyman,
2007). Studies have attributed the effectiveness of pretreatment in improving
enzymatic digestibility of biomass to increasing surface area and porosity
(Chandra er al., 2008; Grethlein, 1984, 1985; Ishizawa et al., 2007: Mooney et
al., 1997, 1998; Tanaka et al., 1988; Thompson ef al., 1992; Wong et al., 1988;
Zeng et al., 2007), removal of hemicellulose and lignin (Grohmann e al.. 1986;
Liu and Wyman, 2005; Pan et al., 2005; Yang and Wyman, 2004; Zhu et al.,
2005), and reductions in cellulose crystallinity and the degree of polymerization
(Chang and Holtzapple, 2000; Knappert et al., 1980; Puri, 1984: Yoshida et al.,
2008). However, due to the complexity of biomass structures, changes in
absolute cellulose crystallinity are difficult to determine accurately (Chang and
Holtzapple, 2000; Puri, 1984; Puri and Pearce, 1986: Sun and Cheng, 2002).
Interactions among other physical and chemical features of pretreated biomass
make it difficult to isolate these variables and precisely determine which
features have the greatest impact (Kumar et al., 2009: Lynd, 1996; Mansfield et
al., 1999; Zhang and Lynd, 2004a). On top of that, enzymatic saccharification of
cellulose is a heterogencous reaction that requires successive adsorption of
multiple enzymes on the surface for hydrolysis to occur (Kumar and Wyman,
2008; Lee and Fan, 1979; Ryu and Lee, 1982). These enzymes attain equili-
brium with the substrate within an hour or two of incubation (Karlsson et al.,
1999; Kumar and Wyman, 2009b; Lynd, 1996), with the amount of adsorbed
enzymes not changing significantly over the course of hydrolysis (Eriksson et
al., 2002b; Medve et al., 1998; Xu et al., 2008; Yu et al.. 1995), especially for
lignocellulosic biomass. Cellulase adsorption is generally quantified by fitting
parameters to the Langmuir isotherm equation (Lynd et al., 2002; Walker and
Wilson, 1991; Zhang and Lynd, 2004b), even though arguments have been made
that this approach is oversimplified (Lynd er al., 2002). Thus, the role of
pretreatment in rendering biomass digestible for enzymes is unfortunately still
ambiguous and not well understood.

In light of the complexity of biomass and the action of enzymes, we believe
that enzymatic hydrolysis of cellulose and hemicellulose in pretreated biomass
can be better viewed from the perspectives of the impact of substrate, enzyme,
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and environmental chemical and physical factors on: 1) the accessibility of
cellulose to enzymes, which is generally determined by the amount of enzyme
adsorbed on cellulose in biomass, and 2) the effectiveness of n__m. enzymes once
they attach to cellulose. The emphasis of this review will be on ._ag:@_im _Sw
substrate aspects that can impact enzyme adsorption o_..nmamﬂzw:omm or _,..2
based on information reported in the literature. Less detailed oo:mao_.m:oz. will
be given to important enzyme characteristics and physical parameters that likely
impact these two potentially governing factors.

3.2 Key substrate features controlling cellulose
hydrolysis: crystallinity

3.21 Accessibility

Enzymes are reported to rapidly hydrolyze amorphous nw::_o% to no:o?o.mn
and glucose, while the hydrolysis of crystalline cellulose is much slower, with
the conclusion that the rate depends on cellulose crystallinity (Bertran and Dale
1985: Ghose and Bisaria, 1979; Wood et al., 1989). The ordered structure o'
crystalline cellulose would impact the ability of cellulase to access cellulose
based on the concept that a layer of cellulose must be removed before enzyme:
can reach layers (Fan et al., 1980; Lee and Fan, 1983; Viljamie et al., 1999) anc
active sites lying underneath (Kongruang and Penner, 2004: Kongruang ef E.
2004; Teeri, 1997; Zhang and Lynd, 2005), and studies Sa.amcon n:mm slowing
with increasing cellulose crystallinity are consistent with this hypothesis (Fane
al., 1981; Sasaki et al., 1979; Sinitsyn et al., 1991). Ioémﬁ.ﬁ others *,_m.s
observed the opposite effect to be true: hydrolysis increases f:r crystallinit
(Grethlein, 1985; Puri, 1984), though the results for real r_o_dmm,n. may b
misinterpreted because removal of amorphous lignin m:.&cn _ana_na__:_cw
would increase biomass crystallinity and enhance digestibility. _..:ernzcaﬁ i
the hydrolysis rates are much slower for crystalline regions, a n_mmm.nm,_ questiol
mawnw as mo why crystallinity does not increase over the course of nc_._c_a
hydrolysis as a result of more rapid removal of amorphous n.n_:.:omm (Ooshima ¢
al.. 1983; Paralikar and Betrabet, 1977). However, no significant .n:m:m.n 1
crystallinity has been measured over the course of cellulose hydrolysis (Boisse
et al., 1999: Chen et al., 2007; Lenz et al., 1990; Puls and Wood, 1991). 1
addition, in some cases, cellulose crystallinity was considered to have no effec
on hydrolysis rates (Converse. 1993; Gharpuray ef a\ 1981; Kim %:
Holtzapple, 2006; Mansfield et al., 1999; Puri, 1984: Puri and Pearce. 198¢
Rivers and Emert, 1988a, 1988b).

The following points may help address this conundrum and understand .5
mechanism better. First, recent studies suggest that cellulases not only functio
as an hydrolytic agent but can simultaneously disrupt the cellulose m:‘:n-:.% to
significant extent (Himmel et al., 1999: Mansfield and Meder, 2003: Sinnot
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1998; Wang et al., 2008; Xiao ef al., 2001). Thus, during hydrolysis, the
action(s) of individual monocomponent enzymes are likely offset by concurrent
modification by complementing enzymes (Mansfield and Meder., 2003). Second,
for real biomass, crystallinity should not be confused with absolute cellulose
crystallinity as real biomass has amorphous components other than cellulose
(Kim and Holtzapple, 2006; Kumar et al., 2009). Third, use of high enzyme
loadings to determine the impact of biomass features and other factors on
hydrolysis may lead to misinterpretation by saturating the substrate. Fourth,
almost all the characterization methods require a treatment before analysis such
as drying, coating, etc., which may disturb the structure of the biomass. None-
theless, better understanding of cellulases functioning at micro level and
advanced analytical tools would help.

Cellulase adsorption could be a useful measure of changes in cellulose
accessibility with crystallinity. The enzyme adsorption capacity of amorphous
“cellulose is much greater than for crystalline material, leading one to expect
amorphous regions to have greater hydrolysis rates and yields (> 50 times) than
for crystalline areas (Hong et al., 2007; Jeoh et al., 2007; Lynd, 1996; Meunier-
Goddik and Penner, 1999; Ooshima e al., 1983; Pinto et al., 2006: Ryu and Lee,
1986: Sinitsyn et al., 1991; Zhang and Lynd, 2004b, 2005). Cellulase adsorption
capacity is generally quantified based on the following Langmuir equation:

—A\.ﬁ_ _ Q_rm..:m:
Ka+ [Ef]
in which [CE] is the amount of adsorbed enzyme in mg/g, [Ef| the free enzyme
concentration in mg/ml, o the maximum adsorption capacity in mg/mg sub-
strate, [S;] the substrate concentration in mg/ml, and K, the equilibrium constant
for the ratio [C](E]/[CE] in mg of enzyme/ml. Representative values of the
Langmuir parameters are summarized in Table 3.1 for a number of ligno-
cellulosic materials reported in the literature; these parameters have been
reviewed elsewhere for pure cellulose (Lynd ef al., 2002; Walker and Wilson,
1991; Zhang and Lynd, 2004b).

Unfortunately, most of the studies cited in Table 3.1 did not report cellulose/
biomass crystallinity, so a clear trend could not be seen between crystallinity and
adsorption capacity. But as reported elsewhere (Kumar, 2008; Kumar et al.,
2009) and discussed in the following sections, cellulose accessibility (as deter-
mined by cellulase adsorption) for a real biomass cannot be solely and clearly
correlated with crystallinity. For example, Ooshima er al. reported that
increasing pretreatment temperatures from 180°C to 220°C increased the
adsorption capacity by almost six times, as shown in Table 3.1. This result
would not be expected for pure cellulose because increased severity should
remove more of the amorphous cellulose (Lenz er al., 1990; Viljamie et al.,
1999) and increase crystallinity, thereby making cellulose less accessible. as
shown by Jeoh and corworkers (Jeoh et al., 2007). However, the opposite was
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Table 3.7 Langmuir parameters for lignocellulosic substrates for various enzymes and proteins

Reference

Ads. Strength

Affinity A,
ml/mg protein

Max. Ads.
Capacity
o, mg/g subs.

Enzyme/
Protein/

Substrate/source

agxA,

A=

Brand name

ml/g sub.

428 Leeetal (1994)
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2.1
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pretreated at 200°C

1.82 146.7

80.6 (40°C)

Hardwood, dilute acid

pretreated at 220°C

Lu (2002)

0.78 133.6

171.3

Celluclast 2L +

Betag-

Douglas Fir, steam exploded

Novozyme 188

0.59 95.8

162.4

Douglas Fir, steam exploded

alkali extracted
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3.7 Effect of cellulose crystallinity on maximum cellulose adsorption capacity
(Lee et al, 1980). SSA is the specific surface area.

observed because increasing temperature (severity) not only makes possible
changes in cellulose crystal structure but removes hemicellulose (Grethlein,
1985). In addition, cellulose DP is reduced (Knappert et al., 1980; Kumar et al.,
2009). and lignin-hemicellulose/cellulose bonds are no doubt ruptured (Gupta et
al., 2008; Kumar ef al., 2009).

For pure cellulosic substrates, Lee and coworkers (Lee et al., 1982) reported a
decline in adsorption capacity of cellulose for complete cellulases' with increas-
ing crystallinity, as shown in Fig. 3.1. Although the specific surface area (SSA in
Fig. 3.1) did not increase as crystallinity dropped, typically SSA and crystal-
linity are related to solids produced by mechanical pretreatments. Ooshima et
al. documented similar cellulase adsorption patterns at 5°C for cellulose of
varying crystallinity prepared by enzymatic digestion of Avicel cellulose for
different times (Ooshima et al., 1983). Similarly, Hoshino et al. showed that
purified exo and endo cellulases of /rpex lecteus had an inverse correlation
between cellulose crystallinity and the maximum amount of protein adsorbed, as
shown in Fig. 3.2 (Hoshino and Kanda, 1997; Hoshino et al., 1992). In a kinetic
study, Ryu er al. demonstrated an increase in adsorption kinetic parameters with
a drop in crystallinity (Ryu and Lee, 1986). In another study, Sinitsyn and
coworkers (1991) reported an inverse correlation between crystallinity of pure
cellulose and the adsorption of peroxidase and chymotrypsin proteins on
cellulose. However, for baggase, protein adsorption was shown to increase with

1. Throughout the chapter complete cellulose(s) refers to the crude mixture containing two
cellobiohydrolases (CBHI and CBHIT), five endoglucanases (EG I to EG V), and a 3-glucosidase,
unless otherwise stated.
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3.2 Effect of cellulose crystallinity on maximum adsorption capacity and
equilibrium constants for exo and endocellulase (Hoshino et al., 1997). Wi,
is the maximum amount of enzyme adsorbed and K is the equilibrium constant.

delignification and a reduction in crystallinity index (Crl). For sodium
hydroxide pretreated wheat straw, Estrada and coworkers (Estrada er al.,
1988) found an inverse correlation between adsorption parameters and
crystallinity.

A study of cellulose binding domains and cellulose interaction showed
greater adsorption of binding domains to amorphous than to crystalline cellulose
(Pinto et al., 2006). Recently, Joeh and coworkers (Jeoh et al.. 2007) revealed
that crystallinity greatly reduces adsorption of Cellobiohydrolase 1 (Cel7A;
CBHI), leading to a decreased extent of hydrolysis. Furthermore, air drying of
dilute acid pretreated corn stover resulted in a decrease in the extent of CBHI
adsorption, probably due to ‘hornification” of fibers (Esteghlalian er al., 2001)
and/or increased crystallinity due to drying (Weimer et al., 1995).

Different cellulase components have different adsorption capacities and
activities (Lynd, 1996; Zhang and Lynd, 2004b), as shown in Table 3.2, where
Avicel is highly crystalline (Crl = ~60%) and has a shorter cellulose chain length
(DP ~ 300) than filter paper (Crl = ~40%; DP ~ 750-2800) (Zhang et al., 2006).
Endoglucanse-1, which attacks and adsorbs preferentially on amorphous
cellulose, was measured to have an average adsorption capacity and activity
greater than for CBH-I on both types of cellulose studied. A similar pattern for
Endoglucanase 1 (EGI, Cel7B) was reported by Ding and Xu (2004), but
Klyosov (1982) observed that the adsorption capacity of endoglucanses from
Trichoderma reesei did not depend on cellulose crystallinity. Yet. contrary to the
numerous studies mentioned above, working with pure cellulose and ligno-
cellulosic substrates, Goel and Ramachandran (1983) found no correlation
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Table 3.2 Adsorption capacity for cellulase components and their activity on cellulose substrates

Substrate

Parameter

Filter paper

Avicel

Temperature/enzyme component

Temperature/enzyme component

N
S

EG-I
1
0.17
0.18
1.2
0.0023

Temp (°C)
50
50
50
40

CBH-I
017
0.17
0.08
0.22
0.0046

Temp (°C)
50
50
50
40

EG-I

126

126
0.0046
0.196

0.045
0.17

Temp (°C)
30
50
45
40
30

CBH-I
69
70
48
51.8
40
63
57

0.065

0.04

0.012

0.019

45
40
30

Temp (°C)

20
25

4
20
40
30
50

Maximum adsorption capacity

(mg/g or umol/g)
(umol glucose Equiv./mg/min)

Specific activity

Avg.

© Woodhead Publishing Limited, 2010

0.461

0.102

0.104

0.034

Avg.

*The data shown above were adapted from Lynd et a/ (2002) and Zhang and Lynd (2004b).
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between crystallinity and adsorption of cellulase enzymes activities. Further-
more, Banka et al. showed that adsorption of a non-hydrolytic protein
designated Fibril Forming Protein (FFP) from Trichoderma reesei increased
with crystallinity (Banka and Mishra, 2002).

3.2.2 Effectiveness

In addition to accessibility, cellulose crystallinity would likely impact the
effectiveness of adsorbed cellulase components. The literature shows that
cellulose crystallinity affects the synergism between cellulase components
(Henrissat, 1994; Henrissat et al., 1985; Hoshino and Kanda, 1997; Hoshino et
al., 1997; Kanda et al., 1980; Murashima et al., 2002; Nidetzky et al., 1993;
Tarantili et al., 1996; Viljamie, 2002; Viljamie et al., 1999; Zhang and Lynd.
2004b). Hoshino er al. found increased synergism between CBHI and
Endoglucanase Il (EGII) from 7. ressei with increased crystallinity and
determined the highest synergism between Cellobiohydrolase II (CBHII, Cel6B)
and EGII to be for a crystallinity index ~ 1.0. In another study, Igarashi and
coworkers showed that the nature of the crystalline cellulose polymorph also
affected hydrolytic activity of adsorbed Cel7A; for example, the maximum
cellulase adsorption capacity on cellulose 13 was approximately 1.5 times that
for cellulose Icv, although the rate of cellobiose generation from cellulose 13 was
lower than that from cellulose Iev (Igarashi er al., 2006a, 2006b, 2007).
Moreover, Mizutani et al. (2002) and Gama and Mota (1997) showed that the
beneficial impact of surfactant on saccharification is influenced by crystallinity
for pure cellulose. However, there is evidence that the presence of surfactants
helps reduce unproductive adsorption of enzymes not only on lignin but on
cellulose as well (Eriksson et al., 2002a; Kumar and Wyman, 2009d; Ooshima et
al., 1986) and thus enhances their effective activity. Furthermore, several ‘restart
studies’ with pure microcrystalline cellulose have shown that unproductive
binding of enzymes is one of the main reasons for the slow down of hydrolysis
rate over hydrolysis time (Kumar and Wyman, 2009c; Ooshima et al., 1991;
Yang et al., 2006). Besides, Ma and coworkers in a recent study have shown that
irreversibly surface bound CBHI loses up to 70% of its activity in just 10
minutes (Ma et al., 2008). On a different note, Gruno et al. reported that end-
product inhibition of cellulase was higher for crystalline cellulose than amor-
phous (Gruno er al., 2004). Therefore, it appears that crystallinity impacts
enzyme effectiveness.

A more limited literature indicates that the processivity of the dominant
enzyme of the Trichoderma system, Cel7A (CBHI) is affected by cellulose
crystallinity. A rough estimate of processivity as measured in terms of the ratio
of cellobiose to glucose released from bacterial microcrystalline cellulose
(BMCC, Crl ~ > 85 %) and amorphous cellulose was reported to be 23 and 14,
respectively, by Ossowski and coworkers (von Ossowski er al., 2003). In another
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3.3 Effect of pretreatment severity on cellulose degree of polymerization (DPv)
as measured by the viscosity method for corn stover solids prepared by leading
pretreatment technologies. The line is shown to help follow the trend but is not
fit to the data. AFEX — ammonia fiber expansion, ARP — ammonia recycled
percolation, DA — dilute acid, CpH — controlled pH, SO, - sulfur dioxide
(Kumar, 2008; Kumar et al., 2009).

pretreatment severity’ (log Ry) is shown in Fig. 3.3 for corn stover solids
prepared by leading pretreatment technologies that all employ heating with
chemicals (Mosier er al., 2005; Wyman et al., 2005b), and DP drops with
severity for almost all of these options. However, crystallinity’ can also be
related to DP for several pretreatments, as shown in Fig. 3.4, clouding the
interpretation of this data due to the drop in cellulase adsorption with increasing
crystallinity discussed before. In another study, Engstrom and coworkers found
that pulp’s accessibility and reactivity for the viscose process increased signifi-
cantly following treatment with monocomponent endoglucanases, which also
resulted in DP reduction; however, similar results, at a comparable DP level,
were not observed when pulp was treated with acid (Engstrom et al., 2006).
Although the information on the effect of cellulose DP on cellulase adsorption is
limited, Kaplan and coworkers (Kaplan et al., 1970) showed a significant drop in
cellulase adsorption and associated lower hydrolysis of altered cellulose
following photochemical degradation, which was probably due to a decrease

2. Severity factor, defined as Ry =t - exp[(7y — T)/14.75], includes only time and temperature
parameters; however, all of these pretreatments except controlled pH (CpH) utilize different
chemicals at various concentrations.

3 Crystallinity values were adopted from Laureano-Perez ef al. (2005).
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3.4 Crystallinity vs. cellulose viscosity degree of polymerization for corn stover
solids prepared by leading pretreatment technologies. AFEX — ammonia fiber
expansion, ARP — ammonia recycled percolation, DA — dilute acid, CpH —
controlled pH, SO, — sulfur dioxide (Kumar, 2008).

in cellulose DP and some ring opening for weathered cotton cellulose. Yet. it is a
well known quoted fact that 80% of fungal cellulase protein (CBHI and CBHII)
preferably attacks chain ends (Carrard and Linder, 1999; Henrissat ef al., 1985:
Teeri et al., 1995), but unfortunately almost nothing has been done to conclu-
sively show the impact of cellulose DP on cellulase adsorption.

3.3.2 Effectiveness

Theoretically, the lower the DP, the more reducing and non-reducing ends are
available, and one would expect that more CBHI/II would be able to work at one
time while making it easier for endoglucanases to act. For soluble cellulose.
Nidetzky et al. found that the initial degradation velocity of cello-oligo-
saccharides by CBHI increased with DP below cellohexose and then remained
constant for higher DP (Nidetzky er al., 1994b). Similar effects of DP for soluble
cellodextrins on CBHII and EGI activity are reviewed elsewhere (Zhang and
Lynd, 2004b). Furthermore, a decrease in 3-glucosidase activity with increasing
DP has been reported (Lee and Fan, 1980; Wilson er al., 1994). However. to the
authors” knowledge, no information is available on the effect of insoluble
cellulose DP on the catalytic efficiency of cellulase except that higher DP could
result in higher synergy between CBHI and EGI (Henrissat. 1994: Okazaki et
al., 1981; Okazaki and Moo-Young, 1978; Zhang and Lynd, 2006). Further-
more, cellulose DP may affect the processivity index, with full processivity of

© Woodhead Publishing Limited, 2010



88 Bioalcohol production

CBHI possibly not realized for short chains (Gupta and Lee, 2009; Viljamie et
al., 1999). Overall, studies of the effect of DP and crystallinity on enzymatic
digestibility demonstrated that the susceptibility of pretreated substrates to
enzymatic hydrolysis could not be easily predicted from the differences in their
cellulose DP and crystallinity (Puri, 1984; Ramos et al.. 1993), likely due to the
complexity of real cellulosic substrates.

34 Key substrate features controlling cellulose
hydrolysis: hemicellulose and degree of
hemicellulose acetylation

3.4.1 Accessibility

It has been postulated that hemicellulose impedes access to cellulose by forming
a sheath around glucan chains (Berlin e al., 2007; Ding and Himmel. 2006;
Himmel et al., 2007; Jeoh et al., 2007; Kumar and Wyman, 2009f, 2009¢g; Selig
et al., 2008; Yoshida et al., 2008), and several studies showed a direct
relationship between cellulose digestion and hemicellulose removal (Allen ef al.,
2001: Grohmann et al., 1986; Ishizawa et al., 2007; Jeoh et al., 2005; Kabel et
al., 2007; Kim et al., 2001; Palonen et al., 2004a; Um et al., 2003; Yang and
Wyman, 2004; Zhu et al., 2005), with some even concluding that lignin removal
is not necessary for good cellulose conversion (Clark et al., 1989; Grohmann et
al., 1986). However, some substrates required high temperatures for the same
degree of hemicellulose removal to be effective, suggesting that hemicellulose
removal is not the only factor impacting digestibility (Torget et al., 1991; Yang
et al, 2004). In addition, some reports do not postulate any role for hemi-
cellulose removal in changing cellulose digestibility (Fan er al., 1982; Millett et
al., 1975; Tsao er al., 1978). Unfortunately, hemicellulose alteration can also
disrupt other biomass components (Chum er al., 1988; Grethlein, 1984; 1985:
Iyer and Lee, 1999; Kumar et al,, 2009; Maloney et al., 1985), making it
challenging to draw firm conclusions about the degree to which it controls
access of enzymes to cellulose. In addition, some contend that hemicellulose
may actually be a marker related to disruption of the far less soluble lignin and
that lignin disruption could be the key to greater digestion (Liu and Wyman,
2003, 2004a, 2004b, 2005; Yang and Wyman, 2004).

Less attention has been given to how the degree of acetylation of the substrate
impacts cellulose digestion. Hemicellulose chains are extensively acetylated in
many types of biomass, and deacetylation was reported to enhance cellulose
digestibility significantly, with some differences noted in the degree of removal
needed (Kim and Holtzapple, 2005; Kumar and Wyman, 2009e; Lemos et al.,
2000; Wood and McCrae, 1986). Removing hemicellulose also removes acetyl
groups (Kabel er al., 2007; Maloney et al., 1985) and usually alters the form of
lignin (Ooshima et al., 1990: Selig et al.. 2007) left on the material, making it

© Woodhead Publishing Limited, 2010

Pretreated lignocelluloses biomass solids 89

difficult to isolate which factor was most influential in improving performance.
One study showed that this effect appeared to become less important beyond
removal of 75% of the acetyl groups (Grohmann er al.. 1989), while other
studies demonstrated continual improvements up to full removal (Kong er al.,
1992; Kumar and Wyman, 2009¢, 2009f). Grohmann and coworkers showed
that removing acetyl esters from aspen wood and wheat straw made them 5 to 7
times more digestible, and Kong and coworkers (1992) observed a major effect
of removing the acetyl content of aspen wood on cellulose digestibility even
though lignin and polysaccharides were left in place. Consistent with this,
Kumar and Wyman observed a significant enhancement in glucan (from 17 to
~40%) and xylan (from 6% to ~30%) digestibility by selective removal of acetyl
groups from corn stover (Kumar and Wyman, 2009f), and > 60% of glucan and
xylan digestion was realized with further supplementation of xvlanase to
cellulase. However, Chang and Holtzapple (2000) applied similar methods to
poplar wood as above but showed that removal of acetyl bonds is less important
than reduction in crystallinity and/or removal of lignin.

Unfortunately, it is still debatable whether hemicellulose removal or the
breakdown of cross-linked network of polysaccharides and bonds among them is
responsible for enhanced digestion of cellulose in pretreated biomass. For
example, Weimer and coworkers (2000) suggested that intimate association of
xylan and cellulose does not inhibit the bio-degradability of polysaccharides.
Furthermore, from a more applied perspective, some pretreatments such as
Ammonia Fiber Expansion (AFEX) produce highly digestible cellulose without
removing much hemicellulose (Dale er al., 1996: Teymouri et al., 2005:
Vlasenko et al., 1997) but remove acetyl groups and probably other side chains
from xylan, disrupting linkages among carbohydrates and lignin to a significant
extent (Chundawat et al., 2007; Kumar e al., 2009). Although the role of acetyl
groups and other side chains removal may seem limited, it is pretty clear that
remhoval of these side chains during pretreatment would surely result in the
reduction of enzyme requirements and enhance both xylan and glucan digestions
as well (Fernandes et al., 1999; Kumar and Wyman, 2009f; Selig et al., 2008).

Although its role in enhancing cellulose digestion is ambiguous, hemi-
cellulose/xylan removal during pretreatment may be desirable for economic and
technical reasons such as higher recovery of xylose and less need for hemi-
cellulose degrading and accessory enzymes (Hespell et al., 1997: Knauf and
Moniruzzaman, 2004; Kumar and Wyman, 2009g: Merino Sandra and Cherry,
2007). In addition, in a recent study we showed that removing hemicellulose
during pretreatment can reduce cellulase/xylanase inhibition by soluble xylo-
oligomers generated during enzymatic hydrolysis (Kumar and Wyman, 2009,
2009f). Similarly, Kim et al. showed that the effluent exiting from Ammonia
Recycled Percolation (ARP) pretreatment of corn stover; containing mostly
xylooligomers, soluble lignin, and sugar and lignin degradation products,
inhibited cellulase and microbial activity significantly (Kim et al. 2006).

© Woodhead Publishing Limited, 2010



90 Bioalcohol production

Furthermore, Suh and Choi showed that xylooligomers inhibited endo-xylanase
action (Suh and Choi, 1996).

We believe that even slight branching of hemicellulose and its acetylated
network can interfere with cellulase access to cellulose (Karlsson et al., 2002;
Pan et al., 2006; Samios et al., 1997; Yu et al., 2003), but this is difficult to
prove in that direct information on the effect of acetylation and hemicellulose on
cellulose accessibility is scarce. However, Jeoh and coworkers (2005, 2007)
recently reported increased cellulose accessibility, as measured by the
adsorption of fluorescent labeled Cel7A (CBHI), and an increase in hydrolysis
with the extent of xylan removal. It is also reported in several recent studies that
supplementation of cellulase with xylanase, which should selectively only
remove xylan, not only enhanced xylan conversion but glucan digestion as well.
In addition, the linear relationship generally found between xylan and glucan
digestion basically indicates that xylan removal affects cellulose accessibility
(Berlin er al., 2007; Beukes et al., 2008; Garcia-Aparicio et al., 2007; Gupta et
al., 2008; Kumar and Wyman, 2009f, 2009g; Murashima er al., 2003; Selig et
al., 2008). Hemicellulose deposition on cellulose during pretreatment (Gray et
al., 2003, 2007; Kumar and Wyman, 2009f; Linder et al., 2003; Nagle et al.,
2002) could also reduce the amount of cellulose available for cellulase action.
Pan er al. in a study suggested (Pan et al., 2006) that acetyl groups in pulp may
restrict cellulase accessibility to cellulose by inhibiting productive binding
through increasing the diameter of cellulose and/or changing its hydrophobicity.
Selective deacetylation of corn stover by the Kong et al. method (Kong ef al.,
1992) enhanced CBHI adsorption significantly more than delignification,
increased the initial rate, and produced greater digestibility of cellulose and
xylan as well, indicating increased cellulose accessibility (Kumar and Wyman,
2009b, 2009f). However, not much information is available in the literature to
clarify whether selective hemicellulose removal and/or deacetylation impacts
cellulase adsorption/accessibility, and further study is needed to understand the
impact of xylooligomers on cellulase (xylanase) adsorption.

3.4.2 Effectiveness

For enzymatic hydrolysis of lignocellulosics, deacetylation and removal of other
side chains may indirectly affect cellulase effectiveness through removing
bonds/linkages to xylose that xylanase could not otherwise hydrolyze, thereby
making xylanase more effective (Anand and Vithayathil, 1996; Fernandes et al..
1999; Glasser et al., 1995; Grabber et al., 1998a; Grohmann et al., 1989:
Kormelink and Voragen, 1992; Mitchell er al., 1990: Rivard et al., 1992;
Shallom and Shoham, 2003; Suh and Choi, 1996; Tenkanen et al., 1996: Wood
and McCrae, 1986), which in turn increases cellulose digestibility (Garcia-
Aparicio et al., 2007; Kumar and Wyman, 2009a, 2009b; Murashima et al.,
2003; Tabka er al., 2006; Yu et al., 2003). Although the effect of xylan removal
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on cellulase efficiency is not yet known, it presumably affects the processiv:
action of Cel7A by binding cellulase unproductively (Chernoglazov et al.. 1988
Tenkanen et al., 1995) and, as discussed earlier, xylan oligomers, release:
during hydrolysis and pretreatments, strongly inhibit enzymes activity (Kim e
al., 2006; Kumar and Wyman, 2009¢c, 2009¢, 2009g; Suh and Choi. 1996
Although the direct effect of acetyl groups on cellulase effectiveness, howeves
may not yet be clear, they certainly affect xylanase effectiveness, as shown b
Kumar and Wyman (Kumar and Wyman, 2009b, 2009f). Some literature report
further lead us to believe that acetylated/substituted xylooligomers should b
much more inhibitory to enzymes effectiveness than just plain xylooligomer
(Kumar and Wyman, 2009¢; Suh and Choi, 1996), as removal of acetyl groups
substitution from soluble xylooligomers by means of hydrolytic action ¢
accessory enzymes such as acetyl xylan esterase and L-arabinofuranosidas
would facilitate break down of xylooligomers by xylanase and beta-xylosidas
and consequently would have lesser impact on cellulase action. Thus, more wor
is needed to clarify whether hemicellulose removal and deacetylation impact th
accessibility of cellulase to cellulose or the effectiveness of cellulase o
cellulose or both.

3.5 Key substrate features controlling cellulose
hydrolysis: lignin

3.5.1 Accessibility

Lignin binds cellulosic fibers together in a composite structure with excelle
properties but also shields cellulose from accessibility to enzymes (Wyman

al., 2005b). Various studies reported cellulose hydrolysis was improved wi
increasing lignin removal, although differences were reported in the degree
lignin removal needed (Converse, 1993; Grethlein, 1984; Yang et al., 200
Yang and Wyman, 2004). Besides the degree of lignin removal, the ratio

syringyl to guaiacyl moieties in the lignin was considered to significant
influence digestibility (Yamamoto et al., 1990).

Overall, the protective lignin sheath is thought to present a major impedime
to enzymatic hydrolysis of cellulose in pretreated biomass by restricting enzyn
accessibility to cellulose (Chandra et al., 2007; Chapple et al., 2007; Mansfield
al., 1999; Pan et al., 2005; Saddler et al., 1982; Taniguchi et al., 2005). T
majority of studies in the literature have reported that enzymatic conversion
polysaccharides is enhanced by delignification of hardwood/softwood and lign
cellulosics (Chang and Holtzapple, 2000; Cunningham et al., 1981: Gharpuray
al., 1981; Kabeya et al., 1993; Koullas et al., 1993; Liao et al., 2005: Morrisc
1983; Sawada et al., 1995; Schwald et al., 1988a: Stinson and Ham, 1995; Su
et al., 1976; Yu et al., 1998); however, others found none or a negati
correlation between lignin content/removal and digestibility of residual cellulo
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(Draude et al., 2001: Jeoh et al., 2005: Kim et al., 2001; Saddler et al., 1982;
Wong et al., 1988).

Overall, the exact role of lignin in limiting hydrolysis has been difficult to
define. One of its most significant effects is on fiber swelling and the resulting
influence on cellulose accessibility (Mooney ef al., 1998; Nelson and Oliver,
1971). For example, Yuldashev et al. observed that the amount of cellulase on
the surface of cotton stalks (cellulose — 44%, lignin — 26.4%) was lower than for
milled cotton stalks (cellulose — 92%, lignin — 0.6%), leading to a drop in
conversion; however, lignin did not inactivate free or bound enzyme (Yuldashev
et al, 1993). In another study, Ishihara and coworkers determined that lignin
slows down enzyme adsorption but does not restrict carbohydrate conversion for
steamed shirakamba wood (Ishihara et al., 1991). Limited delignification of
wheat straw by sodium hydroxide, though not selective, was shown to increase
cellulase adsorption by Estrada et al. (1988). Conversely, Mooney et al.
concluded that the proportion of lignin does not influence cellulase adsorption
for four different types of pulp that differed in lignin content (Mooney et al.,
1997). Although several studies suggested that lignin removal/or lignin content
does not affect cellulase adsorption on cellulose/biomass significantly (Eriksson
et al., 2002a; Lu et al., 2002; Mooney et al., 1998), it has rarely been shown
experimentally whether selective lignin removal affects cellulase adsorption.
For the first time, Kumar and Wyman showed that selective removal of lignin
from corn stover did not significantly increase cellulase accessibility to cellu-
lose, as measured by purified Cel7A adsorption. Instead, lignin removal
appeared to more directly affect xylan accessibility, which in turn affected
cellulose accessibility, as evidenced by a much higher increase in xylan
digestion than glucan and a linear relation between the percentage increase in
xylan and glucan conversions (Kumar and Wyman, 2009b). Consistent with this
hypothesis, in another study, we found that lignin removal by the acid chlorite
method from biomass solids pretreated with high pH pretreatments, which leave
most of the xylan in place, resulted in much higher enhancement of glucan and,
especially. xylan digestibility, compared to low pH pretreatments such as dilute
acid and SO, steam explosion, which are known for their effectiveness in
removing most of the hemicellulose during pretreatment (Kumar and Wyman,
2009a). Ohgren et al. also found a negligible impact of delignification on glucan
digestibility of steam exploded corn stover (Ohgren et al., 2007). Furthermore,
consistent with the above findings, Selig and coworkers reported that lignin
appears to have a more direct impact on xylan than glucan accessibility by
purified cellulase and xylanase activities, which in turn occludes glucan
accessibility (Selig et al., 2009). Several studies in previous years reported that
lignin removal affects hemicellulose more than glucan hydrolysis (Beveridge
and Richards, 1975; Ford, 1983; Mes-Hartree et al., 1987; Morrison, 1983;
Prabhu and Maheshwari. 1999; Teixeira et al., 1999). For example, Chang and
coworkers applied lime pretreatment to effectively remove lignin from switch-
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grass with a 5 and 21 times increase in glucan and xylan digestibility.
respectively (Chang et al., 1997). On a different note, Mes-Hartree and co-
workers employing biologically delignified aspen wood (BDA: 44% lignin
removal) and steamed aspen wood for cellulase production showed that
Trichoderma harzianum produced a low level of cellulase and gave significantly
lower sugar yields for BDA than steamed aspen wood. because the latter had
fewer pentosans than BDA and delignification did not result in enhanced
cellulose accessibility (Mes-Hartree et al., 1987).

Lignin has been claimed to depolymerize, dissolve, repolymerize, and then
precipitate during pretreatment by hemicellulose hydrolysis, although no doubt
in a different morphology that could change its impact on cellulose digestion
(Donohoe et al., 2008; Li et al.. 2007; Ramos et al., 1993; Schell e al., 1991:
Schwald et al., 1988b; Selig et al., 2007; Shevchenko er al., 1999; Yang and
Wyman, 2004). In addition, there is evidence that the high solubility of hemi-
cellulose could aid in taking lignin into solution despite the low solubility of the
later (Gray et al., 2003, 2007), but that the lignin would fall back onto the
biomass once it breaks free from hemicellulose and polymerizes to low
solubility compounds (Liu and Wyman, 2003, 2004a, 2004b, 2005; Yang et al..
2004). The removal/disruption of lignin may not only increase accessibility of
xylan and cellulose, though indirectly, but also make more cellulase and other
enzymes available to act (Kumar and Wyman, 2009d: Yang and Wyman, 2004).
Because lignin is physically and chemically resistant to attack by enzymes,
irreversiblly absorbs cellulase (and other enzymes), and acts as a impenetrable
barrier to cellulase, its presence limits xylan/cellulose accessibility (Kumar and
Wyman, 2009a, 2009b; Lu et al., 2002).

Adsorption of enzymes/proteins on lignin has been shown to follow a
Langmuir isotherm, with typical parameters shown in Table 3.3. The unproduc-
tive binding of protein to lignin is dependent on the source and its preparation
“(Kumar and Wyman, 2009a, 2009b; Ooshima et al., 1990: Sutcliffe and Saddler,
1986) and could likely be reduced by using additives (Boerjesson et al.. 2007;
Eriksson et al., 2002a; Sewalt et al., 1997a; Tu et al., 2007; Yang and Wyman,
2006). For example, as shown in Table 3.3, we found that lignin residues
enzymatically extracted from corn stover and poplar solids, prepared by leading
pretreatment options, had different cellulase adsorption capacities and affinities.
Surprisingly, lignin prepared by dilute acid pretreatment, at least for poplar, had
a low cellulase adsorption capacity but lignin prepared with AFEX pretreatment
was found to have the least. It appears that chemicals/reagents used in pre-
treatment significantly affect lignin characteristics as there was no direct
relationship found between pretreatment temperature/severity (log Ry: includes
time and temperature only) and adsorption parameters. However, Ooshima et al.
applied dilute acid pretreatment of hardwood to show a decline in adsorption
capacity with an increase in temperature due to shrinking and agglomeration of
lignin (Ooshima et al., 1990). Similar observations of lignin melting and its
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Table 3.3 Langmuir parameters for enzyme/protein adsorption on lignin

Substrate/source Enzyme/ Max. Ads. Affinity A, Ads. Strength  Reference
Protein/ Capacity ml/mg protein R=0x%A,
Brand name @, mg/g subs. ml/g sub.
Larch lignin EGI - 0.09 - Chernoglazov et al. (1988)
EGII - 0.1 -
Beech lignin EGI - 0.03 -
EGII - 0.03 -
Lignin residue/180°C* Cellulase GC 123, 100 0.41 40.8 Qoshima et al. (1990)
Genencor
Lignin residue/200°C 66.6 0.66 43.6
Lignin residue/220°C 12.3 0.81 9.93
EL' Celluclast1.5L 86.1 0.51 439 Zheng et al. (2007)
Beta-g/Novo 188 1735 0.75 129.8
EL? Cellulase, Sp. CP 590 (4°C) 0.06 378 Willies (2007)
790 (50°C) 0.18 140
Beta-g/Novo188 170 (4°C) 0.45 76.5
130 (50°C) 0.86 112
Bovine Serum 180 (4°C) 0.64 115
Albumin 280 (50°C) 0.9 255
Alkali lignin CBHI/CBHI-CD/ - 1.7/0.0/ - Palonen et al. (2004b)
EGII/EGII-CD 0.6/0.2
EL® - 0.6/0.0/ -
0.2/0.0
Corn stover-enzyme lignin®
AFEX? Cellulase, 38.7 2.99 116.0 Kumar and Wyman
ARP Spezyme CP 416 10.70 445.0 (2009b)
C.pH 63.6 0.60 36.2
D. acid 53.0 0.68 1745
Lime 64.9 2.69 378
SO, 67.5 6.39 4315
Poplar-enzyme lignin?
AFEX Cellulase, 56.8 214 121.8 Kumar and Wyman
ARP Spezyme CP 921 0.59 54.8 (2009a)
D. acid 74.0 0.29 21.2
FT 112.8 0.67 75.9
Lime 126.9 0.11 14.3
SO, 83.7 0.25 21.0
Alkali-lignin Xylanase, - 11.8 (pH 4.0)/ - Ryu and Kim (1998)
Pulpzyme HC 8.9 (pH 9.0)

* Lignin was obtained from dilute acid pretreated hardwood prepared at three different temperatures. There is no information if the remaining protein was

completely dislodged from lignin surface.

1. Lignin was obtained after complete enzymatic hydrolysis of carbohydrate part of dilute acid pretreated creeping wild rye grass. There is no information if the

protein left on lignin was removed before adsorption studies.

2. Lignin was obtained after complete enzymatic hydrolysis of carbohydrate part (< 15% of carbohydrate left in substrate) of dilute acid pretreated corn stover. The

protein remaining on lignin residue was dislodged by protease treatment.

3. Lignin was obtained after complete enzymatic hydrolysis of carbohydrate part of steam pretreated softwood. It was reported that 55% protein was left adsorbed

on lignin after washing.

“ Pretreatment type; AFEX — ammonia fiber expansion; ARP —ammonia recycled percolation; C.pH - controlled pH; D. acid - dilute acid.
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relocation are affirmed by others as well (Donaldson ef al., 1988; Donohoe et
al., 2008: Michalowicz er al., 1991; Selig et al., 2007). In a recent study, Selig et
al. explained that droplets of lignin, formed during high temperature dilute acid
or water only pretreatment, migrate to the cell wall, and may deposit on the
cellulose surface to impede cellulase adsorption on cellulose (Selig er al., 2007).

Lignin removal is expensive, and it is not clear whether lignin removal or
disruption of its tight association with carbohydrates is more important. Grabber
and coworkers suggested that inhibition of fungal hydrolases is not affected by
lignin composition (Grabber et al., 1997); however, lignin concentration and its
cross-linking with feruloylated xylans greatly affect degradability of cell wall
(Grabber, 2005; Grabber et al., 1998b). Yet, a negative impact of lignin
concentration on cell wall digestibility of tobacco stems was observed by Sewalt
and coworkers (1997b) in another study.

3.5.2 Effectiveness

Although lignin's effect on hydrolysis is not entirely clear, lignin removal is
technically and economically advantageous prior to cellulose saccharification
because unproductive binding to lignin reduces enzyme availability, thereby
limiting cellulase effectiveness (Berlin e al., 2005, 2006; Excoffier et al., 1991;
Jargensen and Olsson, 2006; Kumar and Wyman, 2009a; Mandels and Reese,
1965: Selig et al., 2007; Sewalt et al., 1997a; Wu and Lee, 1997; Yang and
Wyman, 2006), lignin breakdown products are likely to be inhibitory to
fermentation and cellulase effectiveness (Hartley et al., 1976; Kaya et al., 1999;
Lynd, 1996), and lignin increases viscosities (Berson et al., 2006; Fan et al.,
2003) at the higher solid loadings needed commercially (Wingren et al., 2003),
requiring more energy and negatively affecting cellulase effectiveness
(Jorgensen et al., 2007; Nutor and Converse, 1991; Pimenova and Hanley,
2003; Viljamie et al., 2001). Furthermore, lignin and its derivatives were also
reported to precipitate and bond with protein (Kawamoto et al., 1992; Makkar et
al., 1987). In addition, during pretreatment, some soluble lignin depolymeriza-
tion and degradation compounds may form, and these compounds, though their
impact on cellulase adsorption is not known, may severely inhibit enzyme
effectiveness (Excoffier et al., 1991; Garcia-Aparicio et al., 2006; Kaya et al.,
1999; Paul et al., 2003; Selig et al., 2007: Weil et al., 2002). Literature studies
suggest that lignin droplets deposited on cellulose may interact with water, as
one study shows that hydrophobic surfaces at a macroscopic level do not repel
but attract water (van Oss, 1995), and form a boundary layer impeding cellulase
movement (Donohoe er al., 2008; Matthews et al., 2006; Selig et al., 2007).
Unproductive cellulase adsorption on lignin is hypothetically considered due to
hydrophobic interactions (Bai er al., 2008; Kongruang et al., 2003: Tilton et al.,
1991). In some studies, the extent of hydrolysis and the amount of free enzyme
have been reported to increase with increased cellulase hydrophilicity (Kajiuchi
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et al., 1993; Park er al., 2002). because proteins are highly hydrophobic due to
clusters of closely located non-polar residues on their surface (Andreaus et al..
1999; Halder et al., 2005: Karlsson et al., 2005; Reinikainen et al.. 1995:
Suvajittanont et al., 2000) and tend to adsorb strongly on hydrophobic surfaces
(Kongruang et al., 2003; van Oss, 1995). Furthermore, protein attachment to
highly hydrophobic surfaces results in conformational changes and
consequently irreversible adsorption and deactivation (Borjesson et al., 2007:
Kajiuchi ef al., 1993; Palonen. 2004; Park et al., 2002). In addition. lignin
linkages with cellulose (Jin er al., 2006; Karlsson and Westermark, 1996:
Kotelnikova ef al., 1993) presumably impact the processive action of cellulase.
Although lignin may reduce the active amount of enzyme available for
cellulose hydrolysis, its relationship to effectiveness of adsorbed cellulase still
needs further study.

3.6 Conclusions

Overall, it can be concluded that literature reports on enzymatic hydrolysis of
cellulose can be viewed in terms of two key factors, cellulase accessibility to
cellulose and cellulase effectiveness. For example, several studies have shown a
strong correlation between rates/extent of hydrolysis and enzyme adsorption
(Beltrame et al., 1982; Ding et al., 2000; Hogan et al.. 1990: Karlsson et al.,
1999; Klyosov, 1986: Kotiranta ef al., 1999: Lee and Fan, 1979, 1982:
Mansfield et al., 1999; Medve et al., 1998; Mooney et al.. 1999; Nidetzky and
Steiner, 1993; Sakata et al., 1985; Sethi et al., 1998; Watson et al.. 2002: Yang
et al., 2006), and we recently observed an almost linear relationship between the
maximum protein adsorption capacity of cellulase on solids and the hydrolysis
rate and yield in a study with corn stover and poplar solids prepared by
promising pretreatment technologies (Kumar, 2008; Kumar and Wyman, 2009b;
Mosier et al., 2005).

Although cellulase accessibility to cellulose appears to be affected more by
xylan removal than lignin removal, cellulase adsorption and its efficacy cannot
be related to a solitary substrate feature or two for lignocellulosics. As
summarized in Table 3.4, other substrate features may also have a significant
impact on the two factors hypothesized to primarily control hydrolysis: however.
the extent of their impact may either be lower than xylan/lignin removal or
unclear due to their interdependence with lignin/xylan removal. For example,
cellulose crystallinity appears to significantly impact accessibility, at least as
suggested for cellulase adsorption data for pure cellulose and for pretreatments
using reagents such as phosphoric acid that generate amorphous cellulose
(Zhang et al., 2007). However, conventional methods used to determine biomass
crystallinity may suggest otherwise. In addition, even for other thermochemical
pretreatments, the reagents used in combination with heat not only disrupt
lignin-carbohydrate linkages but change hydrogen bonds among cellulose chains

© Woodhead Publishing Limited, 2010



98 Bioalcohol production

Table 3.4 A summary of how primary substrate features are hypothesized to impact
cellulase accessibility to cellulose and cellulase effectiveness with impact ranking

Substrate features Cellulase accessibility to

cellulose (Impact

Cellulase effectiveness
(Impact ranking)

ranking®)

Acetyl groups Small but noticeable Yes (04)
effect (02)

Cellulose crystallinity ~ Yes® Yes®

Cellulose DP Inconclusive Largely inconclusive but
some impact (01)
A major impact (06)

A significant impact (08)

Xylan content
Lignin removal

A significant impact (10)
Appears negligible (0.5)

? Ranking was based on 0 to 10, where 10 stands for the highest impact on the feature noted and
zero for negligible impact.

e Ranking was not given due to lack of convincing resolution in literature.

as well (Chundawat et al., 2007; He et al., 2008; Kumar et al., 2009). Con-
sequently pretreated lignocellulosic solids, in most cases, have much higher
cellulose accessibility (Kumar and Wyman, 2009a, 2009b), resulting in higher
digestibility than pure cellulose such as Avicel (Kumar and Wyman, 2009e;
Lloyd and Wyman, 2005). Thus, the role of crystallinity in cellulose accessi-
bility remains unclear. For example, although the origins are different and
cellulase effectiveness may differ, bacterial cellulose (BC; Crl ~ 60 to 70%) and
bacterial microcrystalline cellulose (BMCC Crl ~> 85%) both have similar or
higher crystallinity but much higher accessibility than microcrystalline cellulose
Avicel (Crl ~ 50 to 60%) (Hong et al., 2007; Zhang and Lynd, 2004b).

The literature also suggests that lignin does not directly limit glucan
accessibility but greatly restricts xylan accessibility which in turn limits glucan
accessibility, as shown by a simplified conceptual model in Fig. 3.5. According to
this model, lignin is strongly linked to xylan but also has bonds to glucan, whereas
xylan is more strongly linked to glucan than lignin and functions as a filler or
spacer between lignin and glucan layers. Therefore, either xylan or lignin removal
should enhance saccharification, but because xylan removal directly impacts
glucan chain accessibility, removing xylan should be more advantageous than
removing lignin. In addition to direct impact on enzyme accessibility to glucan,
xylan removal has some additional advantages; for example, xylan removal
should result in 1) reduced enzyme inhibition by xylooligomers and 2) reduced
requirements for xylanases and other auxiliary enzymes for xylan debranching.
However, lignin removal exposes more xylan, resulting in the need for additional
xylan degrading and auxiliary enzymes to expose glucan to cellulose and makes
more enzymes available for hydrolysis due to reduced unproductive binding. In
addition, removing lignin during pretreatment could have a big impact on process
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Xylan Amorphous cellulose

Crystalline cellulose

Lignin Cellulose

3.5 A simplified conceptual model of biomass structure.

economics by lowering mixing requirements in fermentation and making lignin
available for other uses, provided lignin removal costs are low.

Ammonia fiber expansion (AFEX) pretreatment is unique in that although
AFEX removes little lignin or xylan, it still gives good digestibility, at least for
non woody biomass. This anomaly could be attributed to disruption of lignin-
carbohydrate linkages (LCC) (Chundawat et al., 2007; Kumar et al.. 2009;
Laureano-Perez et al., 2005; Venkatesh et al., 2009) and lignin alteration
resulting in reduced affinity for enzymes (Kumar and Wyman, 2009a, 2009b).
Thus, based on cellulose accessibility (Kumar and Wyman, 2009a, 2009b) and
hydrolysis data with AFEX (Sendich er al., 2008; Venkatesh er al.. 2009), it
could be concluded that LCC disruption is the most important requirement for an
effective pretreatment, as shown in Fig. 3.6, with spacer (xylan)/lignin removal
merely a way to accomplish this goal.

Overall, altering the substrate through reducing substrate hemicelluloses,
lignin, and acetyl contents; crystallinity; and degree of polymerization can
particularly affect accessibility of enzymes to cellulose. However, although
changes in the substrate can be necessary to realize good enzyme effectiveness,
they may not be sufficient because of the importance of the nature of the
numerous cellulase components and chemical and physical environmental
factors to performance. For example, once cellulase protein adsorbs on the
surface, its catalytic efficacy may further be dictated by physical parameters
such as pH, temperature, ionic strength, and the presence of inhibitors (Andreaus
et al, 1999; Kumar and Wyman, 2008; Panagiotou and Olsson, 2007;
Reinikainen et al., 1995; Tengborg et al., 2001) as well as factors related to
the substrate and enzyme.
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Pretreatment

Pretreatment effectiveness
(in terms of residual solids digestibility)

3.6 A schematic decision tree of pretreatment effectiveness.

Although the focus of this review is on how modifications in biomass affect
enzymatic hydrolysis, cellulase components molar ratios and their concen-
trations may affect their adsorption and effectiveness due to synergistic action
(Beukes et al., 2008; Gupta er al., 2008; Murnen et al., 2007; Selig et al., 2008),
and supplementation of cellulase with other enzymes such as j3-glucosidase/
xvlosidase, xylanase, and debranching enzymes may also enhance cellulase
adsorption/effectiveness, depending on substrate and pretreatment type (Girard
and Converse, 1993; Huang and Penner, 1991; Viljamie et al., 2001). The
physical and chemical environment, substrate loadings (Kumar and Wyman,
2008; Stutzenberger and Lintz, 1986; Xiao et al., 2004), sugars (Kristensen et
al., 2009; Kumar and Wyman, 2008; Todorovic et al., 1987; Wendorf et al.,
2004). their oligomers (Garcia-Aparicio ef al., 2006), sugar degradation products
(Kaya et al., 1999; Sineiro et al., 1997), chemical compounds (Eriksson et al.,
2002a; Park et al., 1992), additives (Kim et al., 1988; Moloney and Coughlan,
1983). temperature (Golovchenko et al., 1992; Reinikainen et al., 1995), pH
(Gerber et al., 1997; Kim and Hong, 2000), ionic strength (Azevedo et al., 2000;
Sakata et al., 1985), and agitation (Azevedo et al., 2000; O’Neill et al., 2007;
Sakata er al., 1985) have all been hypothesized to play roles in influencing
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enzyme accessibility and effectiveness. On this basis, a concerted effort is
needed to better understand fundamental physical and chemical features of
lignocellulosic biomass that limit its deconstruction and the organization and
interaction among biomass components that constitute a barrier to access by
enzymes to breakdown carbohydrates into fermentable sugars. Such an under-
standing of factors that control the interactions of substrates and enzymes would
be invaluable in identifying pathways to lower cost advanced coupled pre-
treatment and enzymatic hydrolysis systems. Because new accurate data are
critical to meaningfully assess promising advances in plant, microbial. and
enzymatic systems, improved analytical methods must also be developed to
fully characterize biomass composition and its structure and characterize
interactions among biomass and various chemical treatments, as well as with
deconstruction and hydrolysis enzymes.
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