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Stochastic Green's Function Method for
Calculating the Concentration Profile of a
Chemically Reactive Species
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Princeton, New Jersey

A Green's function formalism is used to derive
a stochastic method for calculating the concen-
tration profile of a chemically reactive species
subjected to diffusion and a convective velocity
field. The validity of the stochastic method is
investigated by calculating the exact solution for
the concentration profile of a reactive species in
a laminar flow tubular reactor and comparing it
with the profile obtained from the random walk
of the stochastic method. The agreement is
found to be excellent. As an example of its
application, the stochastic Green’s function
method is used to estimate the time-dependent
concentration of a solute for a three-dimensional
convective diffusion problem.

I N THE NUMERICAL SOLUTION OF THE THREE-DIMENSIONAL
convective diffusion equation for a chemically re-
active species, a major difficulty arises from the very
large number of mesh points that must be treated.
For example, if the x, y, and z directions have a grid of
40 mesh points each, then the three-dimensional
problem involves a grid of 64,000 mesh points. The
demands made on computer memory and on computer
time by a conventional finite-difference approach with
this large number of mesh points lead to serious prac-
tical problems. Such difficulties are present, for example,
in the calculation of the distribution of pollutants (/).
However, if only an estimate of the distribution of the
chemically reactive species is required, then the sto-
chastic, or Monte Carlo, method (2—4) may be extremely
helpful. The stochastic method has been used, for
example, to calculate the wave function of the Schro-
dinger equation (5-8), to study the convective diffusion
of solutes (9, 10), to calculate the energy distribution
of a chemically reactive species (//, /12), and to obtain
transport coefficients of electrons in gases (/3). This
paper presents a stochastic method based on the
Green’s function for solving the convective diffusion
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equation for a chemically reactive species in three
spatial dimensions. To establish the validity of the
stochastic Green'’s function method, the concentration
profile of a reactive species in a viscous flow tubular
reactor is calculated by a finite-difference method and
compared with the stochastic result. The agreement is
found to be excellent.

STOCHASTIC GREEN'S FUNCTION

The time-dependent convective diffusion equation
for a chemically reactive species is given as

%€ _ PV2C—v(r)-V.C—k(t)C(r, 1) (1)

at
where C(r, ) is the concentration of the chemically
reactive species, D is the diffusivity, v(r) is the convec-
tive velocity field, and k(r) is the rate constant for a
first-order reaction. The concentration of the chemic-
ally reactive species at time ¢ can be obtained from
that at time ¢’ from the equation

cw, 1) = j f J’ G(r, t; 't")C(t’, t')dV"’ Q)
where Green's function G(r, ¢; r't’) is a solution of

& - DViG—v(r)-V,G—k(r)G(r, t;x', )

at
+8(r—r)(t—1t’) 3)

Since the convective velocity field ¥(r) and the rate
constant k(r) are in general complicated functions of
position, solutions of Equation (3) are extremely
difficult to obtain. However, if we consider the case
where ¢ is slightly larger than t’, then we would expect
the reactive species to be concentrated in the region
around r’. In mathematical terms, G(r, ¢; r’, ¢") would
have a large value for r ~ r’ and would be essentially
zero elsewhere. For this case (1 ~ ¢), the solution of
Equation (3) is determined by the values of v(r) and
k(r) near r’ and is essentially independent of the values
of v(r) and k(r) far from r’. Thus we would expect that

G(r, ;e 1) ~ H(r, t;1', 1) t=t 4)



where H(r, ¢; r’, t') is a solution of

?ai’ = DV2H—v(t') V,H—k(c)H(r, 1; ¢, (')
{

+8(r—r")8(t—1') )

Since the coefficients of Equation (5) are not functions
of the independent variable r, a solution can be derived.
Using a transformation discussed by Jost (/4), we
obtain

H(r, x') = (B/m)** exp{—B(r—r'—v(r)/4DB)’ }
exp {—k(t)/4DB}  (6)

where
B =1/4t—1t)D O]

A set of points whose distribution is given by the Green
function of Equation (6) can easily be generated from
random numbers supplied by the computer. The pro-
cedure consists of displacing the point from position r’
to position r' 4+ v(r')/4 DB and then using three Gaussian
distributed random numbers with a variance of 1/28
to determine the final x, y, and z components of dis-
placement. A fourth random number R,, whose distri-
bution is uniform between zero and unity, is next
compared with the value of exp {—A(c')/4DB}. If
R, > exp {—A(r')/[4DB} then a reaction is said to have
occurred and the point is deleted. If R, < exp {—A(r")/
4DB}, then the point is retained. This subprogram,
which relates random numbers supplied by the com-
puter to displacements whose distribution is given by
Equation (6), is used to generate a random walk of
representative molecules of the chemically reactive
species. By preparing a histogram of the positions
of many molecules, a concentration profile of the
chemically reactive species is obtained.

To test the validity of using the Green function
given by Equation (6) in the stochastic method instead
of the extremely complicated Green function that is a
solution of Equation (3), we compared the concentra-
tion profile obtained using the stochastic method with
an exact solution. Since exact analytical or numerical
solutions to a full three-dimensional problem involving
convection, diffusion, and chemical reaction are rare
and difficult to obtain, we chose a two-dimensional
case. The problem selected was the classical experi-
mental and numerical study of Cleland and Wilhelm
(/5), who undertook a thorough investigation of the
laminar flow tubular reactor. The experimental reaction
studied was the hydrolysis of acetic anhydride, a
reaction that lends itself to theoretical study because it
appears to be first order in the anhydride when per-
formed in excess water. The convective diffusion
equation that they treated is

?C l1ac ,, aC
D[ ; + < ‘—]—[l-(r/R)-Jvo,— —kC=0 (8
ar - rar ‘z

Where R is the radius of the tube and v, is the velocity
of the center streamline. The Crank-Nicholson method

was used with Equation (8) to obtain numerical solu-
tions for the concentration profile of the reactive
species. The numerical accuracy of these results was
checked by increasing the number of mesh points until
we found that further increases had no effect on the
results.

The effluent concentration, which is an integral
average concentration based on the volumetric flow
rate, is defined as

. | ~ 2mru(r) C(r, 2)dr
C,(Z) = 7R
J' o 2mro(r)dr

Another quantity, the mean concentration, is defined as

®)

f : 2nr C(r, z)dr

Ca(2) =
f: 2nwrdr

(10)

In Figure | four sets of data for a laminar flow
tubular reactor are shown. The broken line is the
Crank-Nicholson solution of Equation (8) for the
effluent concentration C,(Z) as a function of the
dimensionless axial distance Z = z/R, and the squares
give the results for a long stochastic run for the same
case. The close agreement between these two results
indicates the validity of the stochastic method. The
solid line is the Crank-Nicholson solution of Equation
(8) for the mean concentration C,(Z), and the circles
give the stochastic result for the same case. Again, the
agreement is excellent. Additional data that were
obtained for other values of the parameters « and V,
showed similar agreement, supporting the thesis of the
validity of the stochastic method.
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Figure 1. Dimensionless concentration versus
dimensionless axial distance for a laminar flow
tubular reactor with « = D/kR? = 0.036 and V, =
vo/kR = 1400. The broken line is the Crank-
Nicholson solution for the effluent concentra-
tion C.(Z) as a function of the dimensionless
axial distance Z = z/R, and the squares give the
stochastic result for the same case. The solid
line is the Crank-Nicholson solution for the
mean concentration C.(Z) and the circles give
the stochastic result for the same case.
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Figure 2. Dimensionless Y and Z coordinates of
representative solute molecules at dimension-
less time T = 20 in a slit with y = 0.05. Each
point gives the Y- Z position of a representa-
tive solute molecule.

The stochastic Green function method is especially
useful when an estimate of the solution to a convective
diffusion problem in three dimensions is required. For
example, consider a thin slit whose walls are perpen-
dicular to the x axis and intersect the x axis at x = —a
and x = +a. The streamlines are given as parallel to
the z axis and the convective velocity field is

v(r) = [1—(x/a)*]ve, (1)

where e, is a unit vector in the z direction. At time
t = 0, a pulse of solute is injected into the system at
position ry; = (x,, y,, z,), and we wish to determine the
spatial distribution of solute at a time ¢ later. For
simplicity, we consider the case of no reaction (k = 0).
The convective diffusion equation for these conditions
has the form

ic_ [ic . wc
a ax? + ay? * dz?

2. 0C
—=[1=(x/a)"Ivo ot d(r—r)3(r) (12

It is convenient to use the dimensionless spatial vari-
ables

X = x/a Y = yla Z = zja (13)
the dimensionless time
T = tvgla (14)
and the dimensionless parameter
v = D[vya (15)

Solutions of this three-dimensional equation by stan-
dard numerical methods using finite differences are
difficult to obtain because the gradients are steep and
the number of mesh points needed is very large.
However, with the stochastic method, use of Green’s
function of Equation (6) to generate a random walk
readily gives the positions of representative solute
molecules at time . Instead of preparing a histogram,
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Figure 3. Dimensionless Y and Z coordinateswof

representative solute molecules at dimension-

less time T = 40 in a slit with y = 0.05. Each

point gives the Y- Z position of arepresentative

solute molecule.

it is sometimes more convenient to plot the positions
of the solute molecules. This can be done automatically
with a Calcomp plotter.

In Figure 2 are shown the dimensionless Y and Z
coordinates of representative solute molecules at
dimensionless time 7" = 20. The solute molecules are
introduced into the system at T = 0 at position X, = 1,
Y, =0, Z, = 2. Only one-half of the full distribution,

which is symmetric with respect to the X-Z plane at
Y = 0, is shown. The coordinates of the solute mole-
cules at a later dimensionless time of T = 40 are
given in Figure 3. More than 20 such histories can be
obtained on an IBM 360/91 in less than 4 sec. of
execution time.

ACKNOWLEDGMENT

We would like to thank D. F. Bruley for helpful discussions,
and the National Science Foundation for its support of this
research. In addition, this work made use of computer facilities
supported in part by National Science Foundation Grants
NSF-GJ-34 and NSF-GU-3157.

REFERENCES

1. Ross, L. W., Simulation, 14, 165 (1970).
2. Cashwell, E. D., and C. J. Everett, The Monte Carlo Method
{?56§andom Walk Problems, Pergamon Press, New York
). .
. Hammersley, J. M., and D. C. Handscomb, Monte Carlo
Methods, Wiley, New York (1964).
. Shreider, Yu. A., The Monte Carlo Method, Pergamon Press,
Oxford (1966).
’ ?osnsl)(er, M. D., and M. Kac, J. Res. Natl. Bur. Std.,. 44, 551
1950).
. Fortet, R., J. Res. Natl. Bur. Std., 48, 68 (1952).
. Metropolis, N., in Symposium on Monte Carlo Methods,
p. 29, Interscience, New York (1956).
- Kostin, M. D., and K. Steiglitz, Phys. Rev., 159, 27 (1967).
. Bugliarello, G., and E. D. Jackson III, J. Eng. Mech. Div.,
90 (EM4), 49 (Aug. 1964).
10. Bugliarello, G., and J. W. Hoskins, in Proc. 19th Ann. Conf.
Eng. Med. Biol. (1966).
1. ngg;"' D. C., and M. D. Kostin, J. Chem. Phys., 48, 3067
(1968).
12. f:lglgp;n, D. C,, and M. D. Kostin, J. Chem. Phys., 52, 5317
1970).
13. Bell, M. J., and M. D. Kostin, Phys. Rev., 169, 150 (1968).
14. Jost, W., Diffusion, p. 47, Academic Press, New York (1960).
15. Cleland, F. A, and R. H. Wilhelm, AICKE J., 2, 489 (1956).

Ve NN w»v A W



THE JOURNAL OF CHEMICAL PHYSICS

Reprinted from:

VOLUME 59,

NUMBER 6 15 SEPTEMBER 1973
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The phenomenon of anomalous osmosis is studied by using the coupled Nernst-Planck and
Navier-Stokes equations to investigate diffusion of an electrolyte through a pore of an ion-exchange
membrane. Exact solutions to these equations show that a concentration gradient can produce fluid
motion. It is found that the velocity profiles-may be significantly different from those of Poiseuille

flow.

I. INTRODUCTION

When a2 membrane impermeable to a nonionic
solute separates two nonelectrolytic solutions of
different concentrations, the flow of solvent is
termed osmosis and van’t Hoff’s law holds. When
an ion-exchange membrane separates two electro-
lytic solutions of different concentrations, devia-
tions from van’t Hoff’s law occur and the phenom-
enon is called anomalous osmosis. !*? A theory
of anomalous osmosis, based on approximate solu-
tions to the Nernst-Planck equations, has been
presented by Schlégl.® Kobatake and his col-
leagues'~® have studied the Navier-Stokes equa-
tions coupled to the flux equations of the Nernst—
Planck equations or to the flux equations of irre-
versible thermodynamics. In their work they in-
troduced simplifying assumptions regarding the
velocity profile, such as that the velocity profile
was parabolic or that the velocity profile was in-
dependent of axial distance. It is the purpose of
this paper to develop more detailed and precise
results by obtaining exact solutions to the Nernst—
Planck and Navier-Stokes equations for an elec-
trolyte in a pore of an ion-exchange membrane.
The exact solutions show that the velocity profiles
in a cylindrical capillary of an ion-exchange mem-
brane may show substantial deviations from those
of Poiseuille flow and may depend markedly on
axial distance.

II. DIFFUSION AND HYDRODYNAMIC EQUATIONS

The time-independent Navier—Stokes equation for
a fluid of constant density p and viscosity u is

pWVw=f - VP4 uviw, (1)

where w is the fluid velocity, f is the force per

unit volume, and P is the pressure. The hydro-

dynamic continuity equation is
V.w= 0. (2)

For a cylindrical pore of radius R and length L,
Eqgs. (1) and (2) have the form

3411

v v P
s —r . 947
p(v, ar U Bz) I or
N (Bzv 13, v, 8% 3)
H Bri +r oy —;5_+Bz,‘} g
v dv P
=g Vo hee 38
p(v, ay Tl 8z ) Je 9z
(azv 1 8 +aZvK) @
Ml art Ty ar 9z E

(9v,/87) + (v,/7) + (8v,/82) =0, (5)

where v, and v, are the radial and axial components
of fluid velocity, respectively. The boundary con-
ditions for the partial differential equations (3)
to (5) involving v,(r, 2), v,(»,2), and P(r,z) are

v,(R,z)=0, (6)
v,(R,z)=0, (7)
v,(0,2) =0, (8)
3v,(0,2)/87 =0, (9)
v,(r,0) =0, (10)
P(r,0)=P,, (11)
v,(r,L)=0, (12)
P(r,L)=P,, (13)

where Py and P, are the inlet (z =0) and outlet
(z=L) pressures, respectively.

The time-independent Nernst— Planck equations
for univalent cations and anions are

®,=-D,Vc, - (FD,c,/R,T)V, (14)
®,=~D,Vc, + (FDyc,/R,T)V, (15)
v.$,=0, (16)
v.®,-=0, (17)

where ¢, is the number of moles of cations per
unit volume, ¢, is the molar flux of cations, ¢, is
the number of moles of anions per unit volume,
®, is the molar flux of anions, ¢ is the electric
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potential, F is Faraday’s constant, R, is the gas
constant, and T is the absolute temperature. The
diffusion coefficients of the cations (species A) and
the anions (species B) are denoted by D, and Dy,
respectively. Poisson’s equation relates the elec-
tric potential to the concentrations:

V26 = — (47F/€)(c, - Cb), (18)

where € is the permittivity and the terms are ex-

pressed in cgs units. The force per unit volume

resulting from the electric field is
f==(c,—Cp)FVo. (19)

The condition that the molar flux is zero at
r =R gives us the boundary conditions

(3¢ (R, 2)/37 ]+ [Fc,(R, z')/R,T][a¢(R,z)/ar] =0,
(20)
[8c,(R, 2)/87] = [Fc,(R, 2)/R,T][9¢(R, 2)/37]=0 .
(21)
Fixed ionized groups are considered to be distri-
buted on the interior surface of the pore. The
boundary condition used for the electric potential
at =R is
a¢(R, z)/0r = (4n/€)al2), (22)

where o(z) is the surface charge density. At the
center line of the pore we have the boundary con-
ditions

dc,(0,2)/87 =0, (23)
8c,(0,2)/97 =0, (24)
3¢(0,z)/37 =0. (25)

At z=0 and z = L the boundary conditions are

20
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FIG. 1. Concentration of counterion and concentration
of co-ion as a function of axial distance at radius »
=750 A.
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FIG. 2. Axial velocity as a function of axial distance
at radii » =350, 550, 750, and 950 A.

¢, (r,0) =c,, (26)
c,(7, 0) =c,, (27)
¢ (7, 0) = ¢y, (28)
c,ryL)=c,, (29)
cy(r,L)=cy, (30)
¢(r,L)=¢,. (31)

[II. RESULTS AND DlSCUSSION

The partial differential equations (3)-(5) and
(14)—(19) with the boundary conditions (6)-(13) and
(20)-(31) were solved on a digital computer by
the method of finite differences. Test cases were
run to confirm the proper operation of the computer
program. For example, taking the surface charge
density equal to zero, settingthe potentialdifference

Ap=¢y - b (32)
equal to zero, but letting the pressure difference
AP=P, - P, (33)

be different from zero, we obtained the expected
parabolic velocity profile (Poiseuille flow) from
the computer program.

Next, we considered the distribution of surface
charge to be 0(2) =0 for 0<z<z,, o(z) =0, for
zy<z<z,, and 0(z)=0 for z,<z<L. The pressure
difference AP and the potential difference A¢ were
set equal to zero and the inlet concentration ¢, was
set equal to the outlet concentration c¢,. For this
case we found that no flow occurred and that ¢,
and ¢, were in agreement with the equilibrium
Boltzmann distribution. Then, we increased the
inlet concentration but kept all other parameters
fixed. We found that a concentration gradient pro-
duced fluid flow.
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In Fig. 1 is shown the concentration of the
counterion ¢, and the concentration of the cg-ion
Cy as a function of axial distance at » =750 A for
the following parameters: c,=1.80%107* M,
€1=0.95X10"*M, AP=0, A¢=0, R=1000 &,
L=5000 A, z,=1750 A, 2,=3250 A, o =-145
statcoulombs/cm?, D,=D,=1.95%10"* cm?/sec,
#=1.0x10"%g/cm-sec, €=178.5, p=1.0 g/cm®,
and T=300 °K. The increase in the concentration
of the positively charged counterions in the vicinity
of the negatively charged fixed ions is evident. In
the same region, the concentration of the negative-
ly charged co-ions shows a decrease. The devia-
tion from electroneutrality in the neighborhood of
the fixed ions is seen to be appreciable. In Fig.
2 is shown the axial velocity v, as a function of
axial distance. The axial velocity at »=350 A is
in a direction opposite to the concentration flux
and does not remain constant with axial position
but increases in absolute magnitude in the region

of the fixed ions. The axial velocity at » = 950 A,
which is negative well outside the region of fixed
charges, goes to zero and then becomes positive
inside the region of fixed charges. Thus, we see
that a concentration gradient can produce fluid
motion and that the velocity profiles can be quite
complex.

*Supported in part by a grant from the National Science
Foundation.
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